Closing unused pipe file descriptor is more than a matter of ensuring that a process doesn't exhaust its limited set of file descriptor-it is essential to the correct use of pipes. We now consider why the unused file descriptors for both the read and write ends of the pipe must be closed.
The process reading from the pipe closes its write descriptor for the pipe, so that, when the other process completes its output and closes its write descriptor, the read sees end-of-file (once it has ready any outstanding data in the pipe).
If the reading process doesn't close the write end of the pipe, then after the other process closes its write descriptor, the reader won't see end-of-file, even after it has read all data from the pipe. Instead, a read()
would block waiting for data, because the kernel knows that there is still at least one write descriptor open for the pipe.That this descriptor is held open by the reading process itself is irrelevant; In theory, that process could still write to the pipe, even if it is blocked trying to read.
For example, the read()
might be interrupted by a signal handler that writes data to the pipe.
The writing process closes its read descriptor for the pipe for a different reason.
When a process tries to write to a pipe for which no process has an open read descriptor, the kernel sends the SIGPIPE
signal to the writing process. By default, this signal kills a process. A process can instead arrange to catch or ignore this signal, in which case the write()
on the pipe fails with the error EPIPE
(broken pipe). Receiving the SIGPIPE
signal or getting the EPIPE
error is useful indication about the status of the pipe, and this is why unused read descriptors for the pipe should be closed.
If the writing process doesn't close the read end of the pipe, then even after the other process closes the read end of the pipe, the writing process will fill the pipe, and a further attempt to write will block indefinitely.
One final reason for closing unused file descriptor is that only after it all file descriptor are closed that the pipe is destroyed and its resources released for reuse by other processes. At this point, any unread data in the pipe is lost.
~ Micheal Kerrisk , the Linux programming interface