tl;dr
ChronoUnit.DAYS.between(
earlierInstant.atZone( ZoneId.of( "Africa/Tunis" ) ).toLocalDate() ,
Instant.now().atZone( ZoneId.of( "Africa/Tunis" ) ).toLocalDate()
)
java.time
The modern approach uses the java.time classes that supplanted the troublesome old date-time classes such as Date
& Calendar
.
If you want to calculate the number of elapsed days as the number of calendar dates rather than the number of 24-hour chunks of time, use a date-only class rather than a date-time class.
The LocalDate
class represents a date-only value without time-of-day and without time zone.
A time zone is crucial in determining a date. For any given moment, the date varies around the globe by zone. For example, a few minutes after midnight in Paris France is a new day while still “yesterday” in Montréal Québec.
If no time zone is specified, the JVM implicitly applies its current default time zone. That default may change at any moment, so your results may vary. Better to specify your desired/expected time zone explicitly as an argument.
Specify a proper time zone name in the format of continent/region
, such as America/Montreal
, Africa/Casablanca
, or Pacific/Auckland
. Never use the 3-4 letter abbreviation such as EST
or IST
as they are not true time zones, not standardized, and not even unique(!).
ZoneId z = ZoneId.of( "America/Montreal" ) ;
Generally best to think, work, log, serialize, and exchange values in UTC. For that, use Instant
. The Instant
class represents a moment on the timeline in UTC with a resolution of nanoseconds (up to nine (9) digits of a decimal fraction).
Instant earlier = Instant.now() ;
…
Instant later = Instant.now() ;
Serialize to text in standard ISO 8601 format by calling Instant::toString
and Instant::parse
.
To get your elapsed dates, apply a time zone (ZoneId
) to get ZonedDateTime
objects.
ZonedDateTime zdtEarlier = earlier.atZone( z ) ;
ZonedDateTime zdtLater = later.atZone( z ) ;
Extract the date-only values.
LocalDate ldEarlier = zdtEarlier.toLocalDate() ;
LocalDate ldLater = zdtLater.toLocalDate() ;
Now we can get the elapsed days between the dates.
long daysElapsed = ChronoUnit.DAYS.between( ldEarlier , ldLater ) ;
This calculation is done per the Half-Open approach where the beginning is inclusive while the ending is exclusive. So, for example, a month starts with the first day of the month and runs up to, but does not include, the first day of the following month. Using this approach consistently throughout your business logic, database queries, and so on will make your codebase less error-prone and easier to read/debug/maintain.
I understand you want to use a fully-Open approach where both beginning and ending is exclusive. I strongly suggest you reconsider that position. But if you insist, simply subtract 1
from our calculation above.
long daysElapsedFullyOpen = ( ChronoUnit.DAYS.between( ldEarlier , ldLater ) - 1 ) ; // Subtract 1 to get a fully-Open answer. NOT recommended.
By the way, you may want to consider the Period
class in your work. Similarly, you may find useful the LocalDateRange
class found in the ThreeTen-Extra project.
About java.time
The java.time framework is built into Java 8 and later. These classes supplant the troublesome old legacy date-time classes such as java.util.Date
, Calendar
, & SimpleDateFormat
.
The Joda-Time project, now in maintenance mode, advises migration to the java.time classes.
To learn more, see the Oracle Tutorial. And search Stack Overflow for many examples and explanations. Specification is JSR 310.
You may exchange java.time objects directly with your database. Use a JDBC driver compliant with JDBC 4.2 or later. No need for strings, no need for java.sql.*
classes.
Where to obtain the java.time classes?
The ThreeTen-Extra project extends java.time with additional classes. This project is a proving ground for possible future additions to java.time. You may find some useful classes here such as Interval
, YearWeek
, YearQuarter
, and more.