Like this?
mysamp <- function(n, m, s, lwr, upr, nnorm) {
samp <- rnorm(nnorm, m, s)
samp <- samp[samp >= lwr & samp <= upr]
if (length(samp) >= n) {
return(sample(samp, n))
}
stop(simpleError("Not enough values to sample from. Try increasing nnorm."))
}
set.seed(42)
mysamp(n=10, m=39.74, s=25.09, lwr=0, upr=340, nnorm=1000)
#[1] 58.90437 38.72318 19.64453 20.24153 39.41130 12.80199 59.88558 30.88578 19.66092 32.46025
However, the result is not normal distributed and usually won't have the mean and sd you've specified (in particular if the limits are not symmetric around the specified mean).
Edit:
According to your comment it seems you want to translate this SAS function. I am not an SAS user, but this should do more or less the same:
mysamp <- function(n, m, s, lwr, upr, rounding) {
samp <- round(rnorm(n, m, s), rounding)
samp[samp < lwr] <- lwr
samp[samp > upr] <- upr
samp
}
set.seed(8)
mysamp(n=10, m=39.74, s=25.09, lwr=0, upr=340, rounding=3)
#[1] 37.618 60.826 28.111 25.920 58.207 37.033 35.467 12.434 0.000 24.857
You may then want to use replicate
to run the simulations. Or if you want faster code:
sim <- matrix(mysamp(n=10*10, m=39.74, s=25.09, lwr=0, upr=340, rounding=3), 10)
means <- colMeans(sim)
sds <- apply(sim, 2, sd)