Let's start off by writing a recurrence relation for the runtime:
T(1) = 1
T(2) = 1
T(n+2) = T(n) + T(n + 1) + 1
Now, let's take a guess that
T(n) ≤ 2n
If we try to prove this by induction, the base cases check out:
T(1) = 1 ≤ 2 = 21
T(2) = 1 ≤ 4 = 22
Then, in the inductive step, we see this:
T(n + 2) = T(n) + T(n + 1) + 1
≤ 2n + 2n+1 + 1
< 2n+1 + 2n+1
= 2n+2
Therefore, by induction, we can conclude that T(n) ≤ 2n for any n, and therefore T(n) = O(2n).
With a more precise analysis, you can prove that T(n) = 2Fn - 1, where Fn is the nth Fibonacci number. This proves, more accurately, that T(n) = Θ(φn), where φ is the Golden Ratio, which is approximately 1.61. Note that φn = o(2n) (using little-o notation), so this is a much better bound.
Hope this helps!