After being unsuccessful in using decorators to define the stochastic object of the "logarithm of an exponential random variable", I decided to manually write the code for this new distribution using pymc.stochastic_from_dist
. The model that I am trying to implement is available here(the first model):
Now when I try to sample the log(alpha) using MCMC Metropolis and with a Normal distribution as proposal(as it has been stated in the following picture as the sampling method), I am getting the following error:
File "/Library/Python/2.7/site-packages/pymc/distributions.py", line 980, in rdirichlet
return (gammas[0]/gammas[0].sum())[:-1]
FloatingPointError: invalid value encountered in divide
Although the times that the sampling doesn't run into error the sampling histograms are matching with the ones in this paper. My hierarchical model is:
"""
A Hierarchical Bayesian Model for Bags of Marbles
logalpha ~ logarithm of an exponential distribution with parameter lambd
beta ~ Dirichlet([black and white ball proportions]:vector of 1's)
theta ~ Dirichlet(alpha*beta(vector))
"""
import numpy as np
import pymc
from scipy.stats import expon
lambd=1.
__all__=['alpha','beta','theta','logalpha']
#------------------------------------------------------------
# Set up pyMC model: logExponential
# 1 parameter: (alpha)
def logExp_like(x,explambda):
"""log-likelihood for logExponential"""
return -lambd*np.exp(x)+x
def rlogexp(explambda, size=None):
"""random variable from logExponential"""
sample=np.random.exponential(explambda,size)
logSample=np.log(sample)
return logSample
logExponential=pymc.stochastic_from_dist('logExponential',logp=logExp_like,
random=rlogexp,
dtype=np.float,
mv=False)
#------------------------------------------------------------
#Defining model parameteres alpha and beta.
beta=pymc.Dirichlet('beta',theta=[1,1])
logalpha=logExponential('logalpha',lambd)
@pymc.deterministic(plot=False)
def multipar(a=logalpha,b=beta):
out=np.empty(2)
out[0]=(np.exp(a)*b)
out[1]=(np.exp(a)*(1-b))
return out
theta=pymc.Dirichlet('theta',theta=multipar)
And my test sampling code is:
from pymc import Metropolis
from pymc import MCMC
from matplotlib import pyplot as plt
import HBM
import numpy as np
import pymc
import scipy
M=MCMC(HBM)
M.use_step_method(Metropolis,HBM.logalpha, proposal_sd=1.,proposal_distribution='Normal')
M.sample(iter=1000,burn=200)
When I check the values of theta passed to gamma distribution in line 978 of distributions.py I see that there are not zero but small values! So I don't know how to prevent this floating point error?