In a normal introduction to algorithm class, you will learn that the only difference between Dijkstra and Bell-man Ford, is that the latter works for negative edges at the cost of more computation time. The discussion on time complexity is already give in the accepted answer.
However I want to emphasize and add a bit more to @Halberdier's answer that in a distributed system, Bellman-Ford is implemented EVEN WHEN ALL EDGES ARE Positive. This is because in a Bellman-Ford algorithm, the entity S does not need to know every weight of every edge in the graph to compute the shortest distance to T - it only needs to know the shortest distance for all neighbors of S to T, plus the weight of S to all its neighbors.
A typical application of such algorithm is in Computer Networking, where you need to find the shortest route between two routers. Dijkstra is implemented in a centralized manner called link state Routing, while
Bellman-Ford allows each router to update themselves asynchronously, called distance-vector routing.
I believe no one explains better than Jim Kurose, the author of <Computer Network, a top-down approach>. See his youtube videos below.
Link State routing:
https://www.youtube.com/watch?v=bdh2kfgxVuw&list=TLPQMTIwNjIwMjLtHllygYsxMg&index=3
Distance Vector routing:
https://www.youtube.com/watch?v=jJU2AVX6gpU&list=TLPQMTIwNjIwMjLtHllygYsxMg&index=4