OK as i understand you know common radius of circles R0 and their number N and want to know inside ellipse parameters and positions of everything.
If we convert ellipse to circle then we get this:
const int N=12; // number of satelite circles
const double R=10.0; // radius of satelite circles
struct _circle { double x,y,r; } circle[N]; // satelite circles
int i;
double x,y,r,l,a,da;
x=0.0; // start pos of first satelite circle
y=0.0;
r=R;
l=r+r; // distance ang angle between satelite circle centers
a=0.0*deg;
da=divide(360.0*deg,N);
for (i=0;i<N;i++)
{
circle[i].x=x; x+=l*cos(a);
circle[i].y=y; y+=l*sin(a);
circle[i].r=r; a+=da;
}
// inside circle params
_circle c;
r=divide(0.5*l,sin(0.5*da))-R;
c.x=circle[i].x;
c.y=circle[i].y+R+r;
c.r=r;

[Edit 1]
For ellipse its a whole new challenge (took me two hours to find all quirks out)
const int N=20; // number of satelite circles
const double R=10.0; // satelite circles radius
const double E= 0.7; // ellipse distortion ry=rx*E
struct _circle { double x,y,r; _circle() { x=0; y=0; r=0.0; } } circle[N];
struct _ellipse { double x,y,rx,ry; _ellipse() { x=0; y=0; rx=0.0; ry=0.0; } } ellipse;
int i,j,k;
double l,a,da,m,dm,x,y,q,r0;
l=double(N)*R; // circle cener lines polygon length
ellipse.x =0.0; // set ellipse parameters
ellipse.y =0.0;
r0=divide(l,M_PI*sqrt(0.5*(1.0+(E*E))))-R;// aprox radius to match ellipse length for start
l=R+R; l*=l;
m=1.0; dm=1.0; x=0.0;
for (k=0;k<5;k++) // aproximate ellipse size to the right size
{
dm=fabs(0.1*dm); // each k-iteration layer is 10x times more accurate
if (x>l) dm=-dm;
for (;;)
{
ellipse.rx=r0 *m;
ellipse.ry=r0*E*m;
for (a=0.0,i=0;i<N;i++) // set circle parameters
{
q=(2.0*a)-atanxy(cos(a),sin(a)*E);
circle[i].x=ellipse.x+(ellipse.rx*cos(a))+(R*cos(q));
circle[i].y=ellipse.y+(ellipse.ry*sin(a))+(R*sin(q));
circle[i].r=R;
da=divide(360*deg,N); a+=da;
for (j=0;j<5;j++) // aproximate next position to match 2R distance from current position
{
da=fabs(0.1*da); // each j-iteration layer is 10x times more accurate
q=(2.0*a)-atanxy(cos(a),sin(a)*E);
x=ellipse.x+(ellipse.rx*cos(a))+(R*cos(q))-circle[i].x; x*=x;
y=ellipse.y+(ellipse.ry*sin(a))+(R*sin(q))-circle[i].y; y*=y; x+=y;
if (x>l) for (;;) // if too far dec angle
{
a-=da;
q=(2.0*a)-atanxy(cos(a),sin(a)*E);
x=ellipse.x+(ellipse.rx*cos(a))+(R*cos(q))-circle[i].x; x*=x;
y=ellipse.y+(ellipse.ry*sin(a))+(R*sin(q))-circle[i].y; y*=y; x+=y;
if (x<=l) break;
}
else if (x<l) for (;;) // if too short inc angle
{
a+=da;
q=(2.0*a)-atanxy(cos(a),sin(a)*E);
x=ellipse.x+(ellipse.rx*cos(a))+(R*cos(q))-circle[i].x; x*=x;
y=ellipse.y+(ellipse.ry*sin(a))+(R*sin(q))-circle[i].y; y*=y; x+=y;
if (x>=l) break;
}
else break;
}
}
// check if last circle is joined as it should be
x=circle[N-1].x-circle[0].x; x*=x;
y=circle[N-1].y-circle[0].y; y*=y; x+=y;
if (dm>0.0) { if (x>=l) break; }
else { if (x<=l) break; }
m+=dm;
}
}
Well I know its a little messy code so here is some info:
first it try to set as close ellipse rx,ry axises as possible
ellipse length should be about N*R*2
which is polygon length of lines between circle centers
try to compose circles so they are touching each other and the ellipse
I use iteration of ellipse angle for that. Problem is that circles do not touch the ellipse in their position angle thats why there is q
variable ... to compensate around ellipse normal. Look for yellowish-golden lines in image
after placing circles check if the last one is touching the first
if not interpolate the size of ellipse actually it scales the rx,ry
by m
variable up or down
you can adjust accuracy
by change of the j,k
for
s and/or change of dm,da
scaling factors
input parameter E
should be at least 0.5
and max 1.0
if not then there is high probability of misplacing circles because on very eccentric ellipses is not possible to fit circles (if N
is too low). Ideal setting is 0.7<=E<=1.0
closser to 1 the safer the algorithm is
atanxy(dx,dy)
is the same as `atan(dy/dx)
but it handles all 4 quadrants like atan2(dy,dx)
by sign analysis of dx,dy

Hope it helps