I am pretty new to the r package neuralnet. So the problem I encounter could be 'easy' to solve, but still i haven't succeeded yet.
I have a dataframe that looks like this (only the first 5 rows are shown):
var1 var2 var40 var44 var46 var70 var202 var239 var343 var345 var1103
1 5 4 3 5 1 5 4 4 4 NA 3
2 4 2 2 4 4 2 4 2 4 NA 1
3 4 3 4 4 2 4 3 5 3 NA 4
4 4 4 4 4 3 3 5 5 4 NA 4
5 5 1 5 5 5 5 5 1 5 NA 1
var345 doesn't have NA's on each row.
This is the structure information:
'data.frame': 22536 obs. of 11 variables:
$ var1 : num 5 4 4 4 5 4 3 4 4 5 ...
$ var2 : num 4 2 3 4 1 1 4 4 4 5 ...
$ var40 : num 3 2 4 4 5 1 4 3 5 4 ...
$ var44 : num 5 4 4 4 5 1 3 3 5 4 ...
$ var46 : num 1 4 2 3 5 1 3 2 1 2 ...
$ var70 : num 5 2 4 3 5 1 4 4 4 5 ...
$ var202 : num 4 4 3 5 5 1 4 4 5 4 ...
$ var239 : num 4 2 5 5 1 1 4 3 5 4 ...
$ var343 : num 4 4 3 4 5 1 3 4 2 5 ...
$ var345 : num NA NA NA NA NA NA NA NA NA NA ...
$ var1103: num 3 1 4 4 1 1 2 NA 4 4 ...
When I split this data frame into a trainingset (75% of the data) and a test set (25% of the data), I try to train a neural net on predicting "var1103" by using the rest of the variabeles as predictors:
nn <- neuralnet(var1103~var1+var345+var70+var46+var343+var40+var44+var202+var239+var2,train2, hidden=10, threshold=0.01)
I keap on getting this error:
Error in neurons[[i]] %*% weights[[i]] :
requires numeric/complex matrix/vector arguments
Does anyone have a clue about what's going wrong here and how to solve it? To me the data frame looks rather straight forward, but I could be wrong ofcourse. I have allready tried to convert the variables into factors. This had the same error as a result.