I am building a logistic regression model using a continuous variable with a factor variable with 12 distinct levels (months). I am interested in the interaction effects by month.
glm(formula = PQR.dep ~ multi.month.data * Month, family = binomial,
data = training)
When I review the output, however, the initial factor value (January) seems to be implicit.
How do I either 1) explicitly show the value of that factor, or 2) determine what the coefficient and Pr(>|z|) is?
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.32310 0.16057 -8.24 <0.0000000000000002 ***
multi.month.data -0.08626 0.39769 -0.22 0.83
Month02Feb 0.05221 0.22231 0.23 0.81
Month03Mar -0.17425 0.22824 -0.76 0.45
Month04Apr 0.06336 0.22680 0.28 0.78
.
.
.
Month12Dec 0.05221 0.22231 0.23 0.81
multi.month.data:Month02Feb 0.49568 0.51903 0.96 0.34
multi.month.data:Month03Mar 0.44301 0.57446 0.77 0.44
multi.month.data:Month04Apr 0.88472 0.60063 1.47 0.14
.
.
.
multi.month.data:Month12Dec 0.88472 0.60063 1.47 0.14
In the example above, how do I determine the value of Month01Jan and multi.month.data:Month01Jan?