I'm writing a program that utilizes Euler's Method to calculate whether or not an asteroid's orbit will result in a collision with Earth. At the end of each iteration of the main loop, there is an if statement that uses the distance between the asteroid and earth to determine whether or not a collision would have occurred. When I try running the program I get a Overflow error: numerical result is out of range, I assume that this is due to the fact that I'm using trigonometric functions to convert to and out of polar coordinates and was wondering how I would restrict the size of the floating point values returned by these functions so as to fix the error?
EDIT: Here's the exception:
Traceback (most recent call last):
File "/home/austinlee/eclipse/plugins/org.python.pydev_2.7.0.2013032300/pysrc/pydevd.py", line 1397, in <module>
debugger.run(setup['file'], None, None)
File "/home/austinlee/eclipse/plugins/org.python.pydev_2.7.0.2013032300/pysrc/pydevd.py", line 1090, in run
pydev_imports.execfile(file, globals, locals) #execute the script
File "/home/austinlee/workspace/test/src/orbit.py", line 72, in <module>
if( Dist(x_a, x_e, y_a, y_e) < d_close):
File "/home/austinlee/workspace/test/src/orbit.py", line 37, in Dist
return sqrt((b-a)**2+(d-c)**2)
OverflowError: (34, 'Numerical result out of range')
Here's the code:
from math import *
##position of earth and ast. relative to sun, units in m/s/kg
r_earth = 1.4959787E11
x_e = r_earth
y_e = 0
v_ye = 29784.3405
v_xe = 0
x_a = 1.37801793E11
y_a = 2.31478719E11
v_ya = -14263.6905
v_xa = -8490.32975
##constants- masses and radius's of objects
G = 6.67384E-11
M_sun = 1.988500E30
M_earth = 5.9726E24
R_earth = 6371.0E3
M_ast = 1.30E11
R_ast = 250
t = 0
delta_t = 10
t_max = 10000000
a_xe = 0
a_ye = 0
a_xa = 0
a_ya = 0
##Define Acceleration due to Gravity and Distance Formulas
def Grav(a,b):
return (G*a)/(b**2)
def Dist(a,b,c,d):
return sqrt((b-a)**2+(d-c)**2)
##Derived Constants
t_close = 0
d_close = Dist(x_a,x_e,y_a,y_e)
r_a = Dist(0,x_a,0,y_a)
theta_e = 0
theta_a = atan2(y_a,x_a)
v_angle = sqrt(v_xa**2+v_ya**2)/r_a
v_r1 = v_angle
v_r = sqrt(v_xa**2+v_ya**2)
T = 2* pi/(365*24*3600)
a_r = v_xa**2+v_ya**2
a_theta = (-Grav(M_sun, Dist(x_a,0,y_a,0))-Grav(M_earth,Dist(x_a,x_e,y_a,y_e)))**2-a_r**2
## Main Loop- assuming constant, circular orbit for earth (i.e M_ast is negligible)
for t in range(0, t_max):
t += delta_t
theta_e = T*t
x_e = r_earth*cos( theta_e )
y_e = r_earth*sin( theta_e )
## Convert asteroid parameters into polar coordinates and solve using Euler's Method
a_r = v_xa**2+v_ya**2
a_theta = (-Grav(M_sun, Dist(x_a,0,y_a,0))-Grav(M_earth,Dist(x_a,x_e,y_a,y_e)))**2-a_r**2
v_r1 = v_r
v_r += (a_r + r_a*v_angle**2)*delta_t
v_angle += (a_theta - 2*v_r1*v_angle)* delta_t
theta_a += r_a*theta_a*delta_t
r_a += v_r*delta_t
x_a = r_a*cos( theta_a)
y_a = r_a*sin( theta_a)
## Test for minimum distance
if( Dist(x_a, x_e, y_a, y_e) < d_close):
d_close = Dist( x_a, x_e, y_a, y_e)
t_close = t/(3600*24)
continue
##Print Results:
print "d_close: ", d_close/1000, "km"
print "t_close: ", t_close
if( d_close < R_earth):
print "Impact: Y"
else:
print "Impact: N"
Thanks in advance!