6

I was playing the other day, trying to see how far could I optimize something. I decided to start from a simple map that just does a linear search to find if an element is there, and then try to optimize the most of it. Also, to compare, I do the same with a std::map and a std::vector using std::find.

The results with the map are the expected ones, slower creation and destruction than my map, but much more speed( actually, I have been unable to mesure it, it returns 0 allways). The problem is with std::vector. I expected it to be slower than my implementation, but is not, and I really don't understand how can it be the same or faster, as my implementation is skipping a worst case( the value isn't in the vector) and is using a cache of results.

Can anyone shed some light here? I know that the guys behind stl are semi-gods, but still, this doesn't make sense.

Benchmark results ( i3, Windows 8.1 Pro 64, Visual Studio 2013 ):

std::vector :
    Build : 85.0042 ms
    Loop : 37.0011 ms
    Find : 1.82259 ms  -> First : Found, Second : Found, Third : Not Found
    Release : 0 ms
--------------------
std::map :
    Build : 6929.41 ms
    Loop : 570.032 ms
    Find : 0 ms  -> First : Found, Second : Found, Third : Not Found
    Release : 1425.08
--------------------
Linear Map V0:
    Build : 194.012 ms
    Loop : 49.0052 ms
    Find : 1.88915 ms -> First : Found, Second : Found, Third : Not Found
    Release : 109.004

Here's the code for the map:

template<typename T>
class LinearMap0
{
public:
LinearMap0()
{
    _end = _root = new Node;
    _prebuffer = nullptr;
    prebufferCapacity = 0;
    _alive = true;
    prebufferMarker = 0;
    _cache = _mm_set1_epi32(-1);
    for (auto& ptr : _cacheBuffer) ptr = nullptr;
    MinID = INT32_MAX - 1;
    MaxID = -1;
}
void PreAllocate(int Count)
{
    prebufferCapacity = Count;
    _prebuffer = new Node[Count];
}
~LinearMap0()
{
    if (_alive)
    {
        Release();
    }
}
void Release()
{
    Node* marker = _end;
    while (marker->Prev)
    {
        marker = marker->Prev;
        if (!marker->Next->IsPreAllocated) delete marker->Next;
    }

    if (!_root->IsPreAllocated) delete _root;
    delete[] _prebuffer;

    _alive = false;
}

void AddElement(int ID,T element)
{
    Node* tmp = nullptr;
    if (prebufferMarker < prebufferCapacity)
    {
        // Use a pre-allocated object
        tmp = &_prebuffer[prebufferMarker];
        prebufferMarker++;
        tmp->IsPreAllocated = true;
    }
    else
    {
        tmp = new Node;
    }

    tmp->ID = ID;
    tmp->Data = element;

    // Update list
    _end->Next = tmp;
    Node* prevEnd = _end;
    _end = tmp;
    _end->Prev = prevEnd;
    bool isMin = ID < MinID; MinID = ID * isMin + (1 - isMin) * MinID;
    bool isMax = ID > MaxID; MaxID = ID * isMax + (1 - isMax) * MaxID;
}
void DeleteLast()
{
    Node* tmp = _end;

    _end = _end->Prev;
    _end->Next = nullptr;

    delete tmp;
}

template<class Function>
void Loop(Function&& f, bool Forward = true)
{
    if (Forward)
    {
        Node* marker = _root;
        while (marker->Next)
        {
            marker = marker->Next;
            f(marker->Data);
        }
    }
    else
    {
        Node* marker = _end;
        while (marker->Prev)
        {
            marker = marker->Prev;
            f(marker->Data);
        }
    }
}

T* Find(int ID)
{
    // Bounds check
    if (ID < MinID || ID > MaxID) return nullptr;

    // Check it it's in the cache

    // Compare the value to every value in the cache
    __m128i idxSSE = _mm_set1_epi32(ID);
    __m128i C = _mm_cmpeq_epi32(_cache, idxSSE);

    // To change form -1 to 1
    C = _mm_mul_epi32(C, _mm_set1_epi32(-1));

    // Now C holds 1 if true, or 0 if false (in each of its 4 members). It should only be ONE set at 1
    __m128i tmp = _mm_set1_epi32(1);
    __m128i S = _mm_sub_epi32(tmp, C);

    // Now find the index
    int i = S.m128i_i32[0] * (C.m128i_i32[1] + S.m128i_i32[1] * (2 * C.m128i_i32[2] + S.m128i_i32[2] * (3 * C.m128i_i32[3] + S.m128i_i32[3] * -1)));

    if (i != -1)
        return _cacheBuffer[i];

    // Traverse the list
    Node* marker0 = _root;
    T* obj = nullptr;

    while (true)
    {
        if (marker0->ID == ID)
        {
            obj = &marker0->Data;
        }

        if (marker0->Next) marker0 = marker0->Next; else break;
    }

    // Cache value and return
    _cache.m128i_i32[cacheMarker] = ID;
    _cacheBuffer[cacheMarker] = obj;
    cacheMarker = (cacheMarker + 1) & 3; // x & 3 = x % 4

    return obj;
}
private:
struct Node
{
    Node()
    {
        Prev = nullptr;
        Next = nullptr;
        IsPreAllocated = false;
        ID = -1;
    }
    T Data;
    Node* Prev;
    Node* Next;
    bool IsPreAllocated;
    int ID;
};

Node* _root;
Node* _end;

Node* _prebuffer;
int prebufferCapacity;
int prebufferMarker;

bool _alive;

__m128i _cache;
T* _cacheBuffer[4];
int cacheMarker;
int MinID, MaxID;
};

And here's the benchmark:

// Initialize seeds
const __int64 ecount = 5 * 1000*1000;
vector<__int64> seed(ecount);
for (__int64 i = 0; i < ecount; i++)
{
    seed[i] = i;
}
random_shuffle(seed.begin(), seed.end());

///////////// std::vector

vector<__int64> v;

cout << "--------------------" << endl;
cout << "std::vector :" << endl;
cout << "   Build : " << time_call([&]()
{
    v.resize(ecount/2);
    for (__int64 i = 0; i < ecount; i++)
    {
        if (i < (ecount / 2))
            v[i] = seed[i];
        else
            v.push_back(seed[i]);
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    for (auto& n : v)
        n /= 2;
}) << " ms" << endl;

bool found1, found2, found3;
cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = find(v.begin(), v.end(), seed[5] / 2) != v.end();//find(seed[5]) != m.end();
        found2 = find(v.begin(), v.end(), seed[1000] / 2) != v.end();

        // Shouldn't exist
        found3 = find(v.begin(), v.end(), -1234) != v.end();
    }
})) / 15.0) / 3.0;
cout << " ms " << " -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    v.clear();
}) << " ms" << endl;

///////////// std::map

map<__int64, __int64> m;

cout << "--------------------" << endl;
cout << "std::map :" << endl;
cout << "   Build : " << time_call([&]()
{
    for (__int64 i = 0; i < ecount; i++)
    {
        m[seed[i]] = seed[i];
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    for (auto& n : m)
        n.second /= 2;
}) << " ms" << endl;

cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = m.find(seed[5]) != m.end();
        found2 = m.find(seed[1000]) != m.end();

        // Shouldn't exist
        found3 = m.find(-1234) != m.end();
    }
})) / 15.0) / 3.0;
cout << " ms " << " -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    m.clear();
}) << endl;

///////////// Linear Map V0

LinearMap0<__int64> c;

cout << "--------------------" << endl;
cout << "Linear Map V0:" << endl;
cout << "   Build : " << time_call([&]()
{
    c.PreAllocate(ecount / 2);
    for (__int64 i = 0; i < ecount; i++)
    {
        c.AddElement(seed[i],seed[i]);
    }
}) << " ms" << endl;

cout << "   Loop : " << time_call([&]()
{
    c.Loop([](__int64& Data)
    {
        Data /= 2;
    });
}) << " ms" << endl;

cout << "   Find : " << (((float)time_call([&]()
{
    for (int i = 0; i < 15; i++)
    {
        // Should exist
        found1 = c.Find(seed[5]);
        found2 = c.Find(seed[1000]);

        // Shouldn't exist
        found3 = c.Find(-1234);
    }
})) / 15.0) / 3.0;
cout << " ms -> First : " << ((found1) ? "Found" : "Not Found") << ", Second : " << ((found2) ? "Found" : "Not Found") << ", Third : " << ((found3) ? "Found" : "Not Found") << endl;

cout << "   Release : " << time_call([&]()
{
    c.Release();
}) << endl;

EDIT: time_call is:

template <class Function>
double time_call(Function&& f)
{
    chrono::time_point<chrono::high_resolution_clock> start, end;
    start = chrono::high_resolution_clock::now();
        f();
    end = chrono::high_resolution_clock::now();

    return ((double)(chrono::duration_cast<chrono::nanoseconds>(end - start).count())) / 1000000.0;
}
Walter
  • 44,150
  • 20
  • 113
  • 196
Santiago Pacheco
  • 197
  • 1
  • 13

2 Answers2

12

Your container is a linked list, whereas std::vector is a dynamically-sized array.

The linked list approach has benefits, such as being able to insert elements without any re-allocations.

However the array approach has some significant advantages:

  • a linear search simply scans memory, which is exactly what caches and pre-fetchers are built for. A scan of a linked list will be less efficient because each jump into uncached memory means an expensive cache miss.
  • a linear array scan is easy to vectorize. If you compile with -O3 then the compiler will likely use a vectorized version of std::find. It's impossible to vectorize a linked list scan due to memory dependencies.
  • amount of memory used. Your linked list has to maintain a next pointer which effectively makes your elements larger. Also, each non-preallocated Node has to pay the overhead of the allocator (i.e. accounting data for new and delete). That means you're hitting memory bandwidth limits sooner, and you can fit fewer elements in cache.
Adam
  • 16,808
  • 7
  • 52
  • 98
  • Well, now that you say it, it makes sense. Guess I made a really fast linked list though. – Santiago Pacheco Nov 14 '13 at 19:07
  • PS: Not that fast really: std::list : Build : 292.019 ms Loop : 49.0047 ms Find : 9.73399 ms -> First : Found, Second : Found, Third : Not Found Release : 150.009 ms – Santiago Pacheco Nov 14 '13 at 19:13
  • 5
    Don't beat yourself up. We all try to beat the STL, but get humbled by its years and years of optimizations by people who know what they're doing. They only way to do better is to invent a new container type with lower complexity (i.e. faster big-oh) or use shortcuts that only work on your problem (i.e. break in the general case, so STL can't use them). – Adam Nov 14 '13 at 19:20
  • I'd also recommend reading Stroustrup's FAQ entry about this: http://www.stroustrup.com/bs_faq2.html#slow-containers – Zyx 2000 Nov 14 '13 at 23:26
1

All of the advantages of std vector is that the elements are tightly packed (element 1 in memory is just after element 0 and so on). This is a great advantage for the CPU because the memory reads are much more predictable. When you have nodes allocated on the heap the CPU has to jump back and forth like crazy to fetch the memory.

Check out this thread.

Community
  • 1
  • 1
Raxvan
  • 6,257
  • 2
  • 25
  • 46