The list comprehension is a great structure for generalising working with lists in such a way that the creation of lists can be managed elegantly. Is there a similar tool for managing Dictionaries in Python?
I have the following functions:
# takes in 3 lists of lists and a column specification by which to group
def custom_groupby(atts, zmat, zmat2, col):
result = dict()
for i in range(0, len(atts)):
val = atts[i][col]
row = (atts[i], zmat[i], zmat2[i])
try:
result[val].append(row)
except KeyError:
result[val] = list()
result[val].append(row)
return result
# organises samples into dictionaries using the groupby
def organise_samples(attributes, z_matrix, original_z_matrix):
strucdict = custom_groupby(attributes, z_matrix, original_z_matrix, 'SecStruc')
strucfrontdict = dict()
for k, v in strucdict.iteritems():
strucfrontdict[k] = custom_groupby([x[0] for x in strucdict[k]],
[x[1] for x in strucdict[k]], [x[2] for x in strucdict[k]], 'Front')
samples = dict()
for k in strucfrontdict:
samples[k] = dict()
for k2 in strucfrontdict[k]:
samples[k][k2] = dict()
samples[k][k2] = custom_groupby([x[0] for x in strucfrontdict[k][k2]],
[x[1] for x in strucfrontdict[k][k2]], [x[2] for x in strucfrontdict[k][k2]], 'Back')
return samples
It seems like this is unwieldy. There being elegant ways to do almost everything in Python, I'm inclined to think I'm using Python wrongly.
More importantly, I'd like to be able to generalise this function better so that I can specify how many "layers" should be in the dictionary (without using several lambdas and approaching the problem in a Lisp style). I would like a function:
# organises samples into a dictionary by specified columns
# number of layers could also be assumed by number of criterion
def organise_samples(number_layers, list_of_strings_for_column_ids)
Is this possible to do in Python?
Thank you! Even if there isn't a way to do it elegantly in Python, any suggestions towards making the above code more elegant would be really appreciated.
::EDIT::
For context, the attributes object, z_matrix, and original_zmatrix are all lists of Numpy arrays.
Attributes might look like this:
Type,Num,Phi,Psi,SecStruc,Front,Back
11,181,-123.815,65.4652,2,3,19
11,203,148.581,-89.9584,1,4,1
11,181,-123.815,65.4652,2,3,19
11,203,148.581,-89.9584,1,4,1
11,137,-20.2349,-129.396,2,0,1
11,163,-34.75,-59.1221,0,1,9
The Z-matrices might both look like this:
CA-1, CA-2, CA-CB-1, CA-CB-2, N-CA-CB-SG-1, N-CA-CB-SG-2
-16.801, 28.993, -1.189, -0.515, 118.093, 74.4629
-24.918, 27.398, -0.706, 0.989, 112.854, -175.458
-1.01, 37.855, 0.462, 1.442, 108.323, -72.2786
61.369, 113.576, 0.355, -1.127, 111.217, -69.8672
Samples is a dict{num => dict {num => dict {num => tuple(attributes, z_matrix)}}}, having one row of the z-matrix.