Preserve logical-purity with clpfd!
Here's how:
:- use_module(library(clpfd)).
count_elems([],_,0).
count_elems([X|Xs],Z,Count) :-
X #=< Z,
count_elems(Xs,Z,Count).
count_elems([X|Xs],Z,Count) :-
X #> Z,
Count #= Count0 + 1,
count_elems(Xs,Z,Count0).
Let's have a look at how versatile count_elems/3
is:
?- count_elems([1,2,3,4,5,4,3,2],2,Count).
Count = 5 ; % leaves useless choicepoint behind
false.
?- count_elems([1,2,3,4,5,4,3,2],X,3).
X = 3 ;
false.
?- count_elems([1,2,3,4,5,4,3,2],X,Count).
Count = 0, X in 5..sup ;
Count = 1, X = 4 ;
Count = 3, X = Count ;
Count = 5, X = 2 ;
Count = 7, X = 1 ;
Count = 8, X in inf..0 .
Edit 2015-05-05
We could also use meta-predicate
tcount/3
, in combination with a reified version of (#<)/2
:
#<(X,Y,Truth) :- integer(X), integer(Y), !, ( X<Y -> Truth=true ; Truth=false ).
#<(X,Y,true) :- X #< Y.
#<(X,Y,false) :- X #>= Y.
Let's run above queries again!
?- tcount(#<(2),[1,2,3,4,5,4,3,2],Count).
Count = 5. % succeeds deterministically
?- tcount(#<(X),[1,2,3,4,5,4,3,2],3).
X = 3 ;
false.
?- tcount(#<(X),[1,2,3,4,5,4,3,2],Count).
Count = 8, X in inf..0 ;
Count = 7, X = 1 ;
Count = 5, X = 2 ;
Count = 3, X = Count ;
Count = 1, X = 4 ;
Count = 0, X in 5..sup .
A note regarding efficiency:
count_elems([1,2,3,4,5,4,3,2],2,Count)
left a useless choicepoint behind.
tcount(#<(2),[1,2,3,4,5,4,3,2],Count)
succeeded deterministically.