I want to generate combinations that associate indices in a list with "slots". For instance,(0, 0, 1)
means that 0 and 1 belong to the same slot while 2 belongs to an other. (0, 1, 1, 1)
means that 1, 2, 3 belong to the same slot while 0 is by itself. In this example, 0 and 1 are just ways of identifying these slots but do not carry information for my usage.
Consequently, (0, 0, 0)
is absolutely identical to (1, 1, 1)
for my purposes, and (0, 0, 1)
is equivalent to (1, 1, 0)
.
The classical cartesian product generates a lot of these repetitions I'd like to get rid of.
This is what I obtain with itertools.product
:
>>> LEN, SIZE = (3,1)
>>> list(itertools.product(range(SIZE+1), repeat=LEN))
>>>
[(0, 0, 0),
(0, 0, 1),
(0, 1, 0),
(0, 1, 1),
(1, 0, 0),
(1, 0, 1),
(1, 1, 0),
(1, 1, 1)]
And this is what I'd like to get:
>>> [(0, 0, 0),
(0, 0, 1),
(0, 1, 0),
(0, 1, 1)]
It is easy with small lists but I don't quite see how to do this with bigger sets. Do you have a suggestion?
If it's unclear, please tell me so that I can clarify my question. Thank you!
Edit: based on Sneftel's answer, this function seems to work, but I don't know if it actually yields all the results:
def test():
for p in product(range(2), repeat=3):
j=-1
good = True
for k in p:
if k> j and (k-j) > 1:
good = False
elif k >j:
j = k
if good:
yield p