I am attempting to estimate the parameters of the non-linear equation:
y(x1, x2) = x1 / A + Bx1 + Cx2
using the method outlined in the answer to this question, but can find no documentation on how to pass multiple independent variables to the curve_fit function appropriately.
Specifically, I am attempting to estimate plant biomass (y) on the basis of the density of the plant (x1), and the density of a competitor (x2). I have three exponential equations (of the form y = a[1-exp(-b*x1)]) for the the relationship between plant density and plant biomass, with different parameter values for three competitor densities:
For x2 == 146: y = 1697 * [1 - exp(-0.010 * x1)]
For x2 == 112: y = 1994 * [1 - exp(-0.023 * x1)]
For x2 == 127: y = 1022 * [1 - exp(-0.008 * x1)]
I would therefore like to write code along the lines of:
def model_func(self, x_vals, A, B, C):
return x_vals[0] / (A + B * x_vals[0] + C * x_vals[1])
def fit_nonlinear(self, d, y):
opt_parms, parm_cov = sp.optimize.curve_fit(self.model_func, [x1, x2], y, p0 = (0.2, 0.004, 0.007), maxfev=10000)
A, B, C = opt_parms
return A, B, C
However I have not found any documentation on how to format the argument y (passed to fit_nonlinear
) to capture to two-dimensional nature of the x_vals (the documentation for curve_fit states y should be an N-length sequence). Is what I am attempting possible with curve_fit
?