I come from a Java/Python comp sci theory background so I am still getting used to the various R packages and how they can save run time in functions.
Basically, I am working on a few projects and all of them involve taking individual factors in a long-list data set (15,000 to 200,000 factors) and performing calculations on individual factors in an equally-large data set, and concurrently storing the results of those calculations in an exponentially-longer data frame.
So far I have been using nested while loops and concatenating into a growing list, but that is taking days. Ive recently learned about 'lapply' and the 'data.frame' options in R, and I would love to see an example of how to apply (no pun intended) them to the following basic correlation function:
Corr<-function(miRdf, mRNAdf)
{
j=1
k=1
m=1
n=1
c=0
corrList=NULL
while(n<=71521)
{
while(m<=1477)
{
corr=cor(as.numeric(miRdf[k,2:13]), as.numeric(mRNAdf[j,2:13]), use ="complete.obs")
corrList<-c(corrList, corr)
j=j+1
c=c+1
print(c) #just a counter to see how far the function has run
m=m+1
}
k=k+1
n=n+1
j=1
m=1 #to reset the inner while loop
}
corrList<-matrix(unlist(corrList), ncol=1477, byrow=FALSE)
colnames(corrList)<-miRdf[,1]
rownames(corrList)<-mRNAdf[,1]
write.csv(corrList, "testCorrWhole.csv")
}
As you can see, the nested while loop results in 105,636,517 (71521x1477) miRNA vs mRNA expression-value correlation scores that need to be performed and stored in a data frame that is 1477 cols x 71521 rows in order to generate a scoring matrix.
My question is, can anyone shed light on how to turn the above monstrosity into an efficient function that utilizes 'lapply' instead of the while loops, and uses the 'data.table' set() function to do away with the inefficiency of concatenating a list during every pass through the loop?
Thank you in advance!