It said that
Record.objects.order_by('?')[:n]
have performance issues, and recommend doing something like this: (here)
sample = random.sample(xrange(Record.objects.count()),n)
result = [Record.objects.all()[i] for i in sample]
Since that, why not do it directly like this:
result = random.sample(Record.objects.all(),n)
I have no idea about when these code running what is django actually doing in background. Please tell me the one-line-code at last is more efficient or not? why?
================Edit 2013-5-12 23:21 UCT+8 ========================
I spent my whole afternoon to do this test.
My computer : CPU Intel i5-3210M RAM 8G
System : Win8.1 pro x64 Wampserver2.4-x64 (with apache2.4.4 mysql5.6.12 php5.4.12) Python2.7.5 Django1.4.6
What I did was:
- Create an app.
- build a simple model with a index and a
CharField
content, thenSyncdb
. - Create 3 views can get a random set with 20 records in 3 different ways above, and output the time used.
- Modify
settings.py
thatDjango
can output log into console. - Insert rows into table, untill the number of the rows is what I want.
- Visit the 3 views, note the SQL Query statement, SQL time, and the total time
- repeat 5, 6 in different number of rows in the table.(10k, 200k, 1m, 5m)
This is views.py
:
def test1(request):
start = datetime.datetime.now()
result = Record.objects.order_by('?')[:20]
l = list(result) # Queryset是惰性的,强制将Queryset转为list
end = datetime.datetime.now()
return HttpResponse("time: <br/> %s" % (end-start).microseconds/1000))
def test2(request):
start = datetime.datetime.now()
sample = random.sample(xrange(Record.objects.count()),20)
result = [Record.objects.all()[i] for i in sample]
l = list(result)
end = datetime.datetime.now()
return HttpResponse("time: <br/> %s" % (end-start)
def test3(request):
start = datetime.datetime.now()
result = random.sample(Record.objects.all(),20)
l = list(result)
end = datetime.datetime.now()
return HttpResponse("time: <br/> %s" % (end-start)
As @Yeo said,result = random.sample(Record.objects.all(),n)
is crap. I won't talk about that.
But interestingly, Record.objects.order_by('?')[:n]
always better then others, especially the table smaller then 1m rows. Here is the data:
and the charts:
So, what's happened?
In the last test, 5,195,536 rows in tatget table, result = random.sample(Record.objects.all(),n)
actually did ths:
(22.275) SELECT `randomrecords_record`.`id`, `randomrecords_record`.`content`
FROM `randomrecords_record` ORDER BY RAND() LIMIT 20; args=()
Every one is right. And it used 22 seconds. And
sample = random.sample(xrange(Record.objects.count()),n)
result = [Record.objects.all()[i] for i in sample]
actually did ths:
(1.393) SELECT COUNT(*) FROM `randomrecords_record`; args=()
(3.201) SELECT `randomrecords_record`.`id`, `randomrecords_record`.`content`
FROM `randomrecords_record` LIMIT 1 OFFSET 4997880; args=()
...20 lines
As you see, get one row, cost 3 seconds. I find that the larger index, the more time needed.
But... why?
My think is:
If there is some way can speed up the large index query,
sample = random.sample(xrange(Record.objects.count()),n)
result = [Record.objects.all()[i] for i in sample]
should be the best. Except(!) the table is smaller then 1m rows.