I have the following simple code which estimates the probability that an h by n binary matrix has a certain property. It runs in exponential time (which is bad to start with) but I am surprised it is so slow even for n = 12 and h = 9.
#!/usr/bin/python
import numpy as np
import itertools
n = 12
h = 9
F = np.matrix(list(itertools.product([0,1],repeat = n))).transpose()
count = 0
iters = 100
for i in xrange(iters):
M = np.random.randint(2, size=(h,n))
product = np.dot(M,F)
setofcols = set()
for column in product.T:
setofcols.add(repr(column))
if (len(setofcols)==2**n):
count = count + 1
print count*1.0/iters
I have profiled it using n = 10 and h = 7. The output is rather long but here are the lines that took more time.
23447867 function calls (23038179 primitive calls) in 35.785 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
2 0.002 0.001 0.019 0.010 __init__.py:1(<module>)
1 0.001 0.001 0.054 0.054 __init__.py:106(<module>)
1 0.001 0.001 0.022 0.022 __init__.py:15(<module>)
2 0.003 0.002 0.013 0.006 __init__.py:2(<module>)
1 0.001 0.001 0.003 0.003 __init__.py:38(<module>)
1 0.001 0.001 0.001 0.001 __init__.py:4(<module>)
1 0.001 0.001 0.004 0.004 __init__.py:45(<module>)
1 0.001 0.001 0.002 0.002 __init__.py:88(<module>)
307200 0.306 0.000 1.584 0.000 _methods.py:24(_any)
102400 0.026 0.000 0.026 0.000 arrayprint.py:22(product)
102400 1.345 0.000 32.795 0.000 arrayprint.py:225(_array2string)
307200/102400 1.166 0.000 33.350 0.000 arrayprint.py:335(array2string)
716800 0.820 0.000 1.162 0.000 arrayprint.py:448(_extendLine)
204800/102400 1.699 0.000 5.090 0.000 arrayprint.py:456(_formatArray)
307200 0.651 0.000 22.510 0.000 arrayprint.py:524(__init__)
307200 11.783 0.000 21.859 0.000 arrayprint.py:538(fillFormat)
1353748 1.920 0.000 2.537 0.000 arrayprint.py:627(_digits)
102400 0.576 0.000 2.523 0.000 arrayprint.py:636(__init__)
716800 2.159 0.000 2.159 0.000 arrayprint.py:649(__call__)
307200 0.099 0.000 0.099 0.000 arrayprint.py:658(__init__)
102400 0.163 0.000 0.225 0.000 arrayprint.py:686(__init__)
102400 0.307 0.000 13.784 0.000 arrayprint.py:697(__init__)
102400 0.110 0.000 0.110 0.000 arrayprint.py:713(__init__)
102400 0.043 0.000 0.043 0.000 arrayprint.py:741(__init__)
1 0.003 0.003 0.003 0.003 chebyshev.py:87(<module>)
2 0.001 0.000 0.001 0.000 collections.py:284(namedtuple)
1 0.277 0.277 35.786 35.786 counterfeit.py:3(<module>)
205002 0.222 0.000 0.247 0.000 defmatrix.py:279(__array_finalize__)
102500 0.747 0.000 1.077 0.000 defmatrix.py:301(__getitem__)
102400 0.322 0.000 34.236 0.000 defmatrix.py:352(__repr__)
102400 0.100 0.000 0.508 0.000 fromnumeric.py:1087(ravel)
307200 0.382 0.000 2.829 0.000 fromnumeric.py:1563(any)
271 0.004 0.000 0.005 0.000 function_base.py:3220(add_newdoc)
1 0.003 0.003 0.003 0.003 hermite.py:59(<module>)
1 0.003 0.003 0.003 0.003 hermite_e.py:59(<module>)
1 0.001 0.001 0.002 0.002 index_tricks.py:1(<module>)
1 0.003 0.003 0.003 0.003 laguerre.py:59(<module>)
1 0.003 0.003 0.003 0.003 legendre.py:83(<module>)
1 0.001 0.001 0.001 0.001 linalg.py:10(<module>)
1 0.001 0.001 0.001 0.001 numeric.py:1(<module>)
102400 0.247 0.000 33.598 0.000 numeric.py:1365(array_repr)
204800 0.321 0.000 1.143 0.000 numeric.py:1437(array_str)
614400 1.199 0.000 2.627 0.000 numeric.py:2178(seterr)
614400 0.837 0.000 0.918 0.000 numeric.py:2274(geterr)
102400 0.081 0.000 0.186 0.000 numeric.py:252(asarray)
307200 0.259 0.000 0.622 0.000 numeric.py:322(asanyarray)
1 0.003 0.003 0.004 0.004 polynomial.py:54(<module>)
513130 0.134 0.000 0.134 0.000 {isinstance}
307229 0.075 0.000 0.075 0.000 {issubclass}
5985327/5985305 0.595 0.000 0.595 0.000 {len}
306988 0.120 0.000 0.120 0.000 {max}
102400 0.061 0.000 0.061 0.000 {method '__array__' of 'numpy.ndarray' objects}
102406 0.027 0.000 0.027 0.000 {method 'add' of 'set' objects}
307200 0.241 0.000 1.824 0.000 {method 'any' of 'numpy.ndarray' objects}
307200 0.482 0.000 0.482 0.000 {method 'compress' of 'numpy.ndarray' objects}
204800 0.035 0.000 0.035 0.000 {method 'item' of 'numpy.ndarray' objects}
102451 0.014 0.000 0.014 0.000 {method 'join' of 'str' objects}
102400 0.222 0.000 0.222 0.000 {method 'ravel' of 'numpy.ndarray' objects}
921176 3.330 0.000 3.330 0.000 {method 'reduce' of 'numpy.ufunc' objects}
102405 0.057 0.000 0.057 0.000 {method 'replace' of 'str' objects}
2992167 0.660 0.000 0.660 0.000 {method 'rstrip' of 'str' objects}
102400 0.041 0.000 0.041 0.000 {method 'splitlines' of 'str' objects}
6 0.003 0.000 0.003 0.001 {method 'sub' of '_sre.SRE_Pattern' objects}
307276 0.090 0.000 0.090 0.000 {min}
100 0.013 0.000 0.013 0.000 {numpy.core._dotblas.dot}
409639 0.473 0.000 0.473 0.000 {numpy.core.multiarray.array}
1228800 0.239 0.000 0.239 0.000 {numpy.core.umath.geterrobj}
614401 0.352 0.000 0.352 0.000 {numpy.core.umath.seterrobj}
102475 0.031 0.000 0.031 0.000 {range}
102400 0.076 0.000 0.102 0.000 {reduce}
204845/102445 0.198 0.000 34.333 0.000 {repr}
The multiplication of the matrices seems to take a tiny fraction of the time. Is it possible to speed up the rest?
Results
There are now three answers but one seems to have a bug currently. I have tested the remaining two with n=18, h=11 and iters=10 .
- bubble - 21 seconds, 185MB of RAM . 16 seconds on "sort".
- hpaulj - 7.5 seconds, 130MB of RAM . 3 seconds on "tolist". 1.5 seconds on "numpy.core.multiarray.array", 1.5 seconds on "genexpr" (the 'set' line).
Interestingly, the time for multiplying the matrices is still a tiny fraction of the overall time taken.