As everyone else says, you cannot directly iterate over data members of a
class. However, it is not difficult to do it indirectly, provided of course that
you can access each of the data members you want to iterate over. The idea
in essense, as per ScarletAmaranth's solution, is to iterate over an std::tuple
of references to those data members.
The following program shows how to obtain such a tuple, using std::forward_as_tuple
,
and another way to do the iterating by compiletime recursion, without
auxiliary apparatus.
#include <tuple>
/* You want to be able do something with the values of the members of an `A`
in turn.
*/
struct A
{
char ch;
int i;
double d;
// May also have members of class type. It doesn't matter
};
/* 1) Provide yourself with the means of creating a sequence that contains
references to the data members of a given `A`
*/
std::tuple<char const &, int const &, double const &> get_A_vals(A const & a)
{
return std::forward_as_tuple(a.ch,a.i,a.d);
}
/* 2) Provide yourself with a means of applying some operation, `Func`,
to each element of an `std::tuple`
*/
template<size_t I = 0, typename Func, typename ...Ts>
typename std::enable_if<I == sizeof...(Ts)>::type
for_each_in_tuple(std::tuple<Ts...> const &, Func) {}
template<size_t I = 0, typename Func, typename ...Ts>
typename std::enable_if<I < sizeof...(Ts)>::type
for_each_in_tuple(std::tuple<Ts...> const & tpl, Func func)
{
func(std::get<I>(tpl));
for_each_in_tuple<I + 1>(tpl,func);
}
/* 3) Combine 1) and 2) to apply `Func` over the members of an `A`
*/
template<typename Func>
void for_each_in_A(A const & a, Func func)
{
for_each_in_tuple(get_A_vals(a),func);
}
// Testing...
#include <iostream>
// A specimen operation: just prints its argument
struct printer
{
template<typename T>
void operator () (T && t)
{
std::cout << t << std::endl;
}
};
int main()
{
A a{'a',1,2.0};
for_each_in_A(a,printer());
return 0;
}
// EOF
The program outputs:
a
1
2
If you have control of the structs or classes over whose members you need to
iterate, you may consider whether it is practical simply to dispense with them
and use the corresponding std::tuple
s everywhere.
Code built with gcc 4.8.2 and clang 3.3, -std=c++11
.