I am using mdply
with mutate
to get a list into a data.frame using info from here:
# predictions
X1 DAY MONTH YEAR pLength pred
1.1.1.V1 1 1 1 0.00 1.00
1.1.1.V2 1 1 1 0.25 2.00
1.1.1.V3 1 1 1 1.00 1.00
2.2.1.V1 2 2 1 0.00 2.00
2.2.1.V2 2 2 1 0.50 2.50
2.2.1.V3 2 2 1 1.00 3.00
2.3.2.V1 2 3 2 0.00 2.00
2.3.2.V2 2 3 2 0.65 2.35
2.3.2.V3 2 3 2 1.00 3.00
Though I would like the result to be arranged like this:
# DFx
DAY MONTH YEAR pLength V1 V2 V3
1 1 1 0.00 1 NA NA
1 1 1 0.25 NA 2.00 NA
1 1 1 1.00 NA NA 1
2 2 1 0.00 2 NA NA
2 2 1 0.50 NA 2.50 NA
2 2 1 1.00 NA NA 3
2 3 2 0.00 2 NA NA
2 3 2 0.65 NA 2.35 NA
2 3 2 1.00 NA NA 3
Is there something I could differently in the code below to arrive the format of DFx
? I have tried casting predictions
unsuccessfully. Or, are there options besides mutate
to use with mdply
that might allow the end result I am looking for?
EDIT: My current solution is to save predictions
as a csv, open it in Excel, do a text to columns to split it leaving a column with just the variable name (i.e. V1, V2, V3) named variable, bring that back into r, and finally dcast dcast(pred, DATE+pLength ~ variable)
.
df1 <- structure(list(DAY = c(1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L), MONTH = c(1L, 2L, 3L, 1L, 2L,
3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), YEAR = c(1L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 2L, 1L, 1L, 2L, 1L, 1L, 2L), pLength = c(0L,
0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L,
1L), variable = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("V1", "V2", "V3"
), class = "factor"), value = c(1L, 2L, 2L, 3L, 1L, 1L, 2L, 3L,
3L, 2L, 2L, 2L, 3L, 1L, 1L, 1L, 3L, 3L)), .Names = c("DAY", "MONTH",
"YEAR", "pLength", "variable", "value"), row.names = c(NA, -18L
), class = "data.frame")
df2 <- structure(list(DAY = c(1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), MONTH = c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L), YEAR = c(1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L), pLength = c(0, 0.25, 1, 0, 0.5, 1, 0, 0.65,
1), X1 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), X2 = c(0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L), X3 = c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), X4 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), .Names = c("DAY",
"MONTH", "YEAR", "pLength", "X1", "X2", "X3", "X4"), class = "data.frame", row.names = c(NA,
-9L))
# choose colums from df2 that will be used to receive the predicted values
recvars <- c("DAY", "MONTH", "YEAR", "pLength")
rec <- df2[recvars]
recList <- dlply(rec, c("DAY", "MONTH", "YEAR", "pLength"))
# create list of models that predict the value by pLength
models <- dlply(df1, c("DAY", "MONTH", "YEAR", "variable"), function(df)
lm(value ~ pLength, data = df))
# get predicted values
predictions <- mdply(cbind(mod = models, df = recList), function(mod, df) {
mutate(df, pred = predict(mod, newdata = df))
})