I read some related posts:
(1) From Robert Love: http://permalink.gmane.org/gmane.linux.kernel.kernelnewbies/1791
You cannot sleep in an interrupt handler because interrupts do not have a backing
process context, and thus there is nothing to reschedule back into. In other
words, interrupt handlers are not associated with a task, so there is nothing to
"put to sleep" and (more importantly) "nothing to wake up". They must run
atomically.
(2) From Which context are softirq and tasklet in?
If sleep is allowed, then the linux cannot schedule them and finally cause a
kernel panic with a dequeue_task error. The interrupt context does not even
have a data structure describing the register info, so they can never be scheduled
by linux. If it is designed to have that structure and can be scheduled, the
performance for interrupt handling process will be effected.
So in my understanding, interrupt handlers run in interrupt context, and can not sleep, that is to say, can not perform the context switch as normal processes do with backing mechanism.
But a interrupt handler can be interrupted by another interrupt. And when the second interrupt handler finishes its work, control flow would jump back to the first interrupt handler.
How is this "restoring" implemented without normal context switch? Is it like normal function calls with all the registers and other related stuff stored in a certain stack?