I have been working on this project for a couple months right now. The ultimate goal of this project is to evaluate an entire digital logic circuit similar to functional testing; just to give a scope of the problem. The topic I created here deals with the issue I'm having with performance of analyzing a boolean expression. For any gate inside a digital circuit, it has an output expression in terms of the global inputs. EX: ((A&B)|(C&D)^E)
. What I want to do with this expression is then calculate all possible outcomes and determine how much influence each input has on the outcome.
The fastest way that I have found was by building a truth table as a matrix and looking at certain rows (won't go into specifics of that algorithm as it's offtopic), the problem with that is once the number of unique inputs goes above 26-27 (something around that) the memory usage is well beyond 16GB (Max my computer has). You might say "Buy more RAM", but as every increase in inputs by 1, memory usage doubles. Some of the expressions I analyze are well over 200 unique inputs...
The method I use right now uses the compile method to take the expression as the string. Then I create an array with all of the inputs found from the compile method. Then I generate a list row by row of "True" and "False" randomly chosen from a sample of possible values (that way it will be equivalent to rows in a truth table if the sample size is the same size as the range and it will allow me to limit the sample size when things get too long to calculate). These values are then zipped with the input names and used to evaluate the expression. This will give the initial result, after that I go column by column in the random boolean list and flip the boolean then zip it with the inputs again and evaluate it again to determine if the result changed.
So my question is this: Is there a faster way? I have included the code that performs the work. I have tried regular expressions to find and replace but it is always slower (from what I've seen). Take into account that the inner for loop will run N times where N is the number of unique inputs. The outside for loop I limit to run 2^15 if N > 15. So this turns into eval being executed Min(2^N, 2^15) * (1 + N)
...
As an update to clarify what I am asking exactly (Sorry for any confusion). The algorithm/logic for calculating what I need is not the issue. I am asking for an alternative to the python built-in 'eval' that will perform the same thing faster. (take a string in the format of a boolean expression, replace the variables in the string with the values in the dictionary and then evaluate the string).
#value is expression as string
comp = compile(value.strip(), '-', 'eval')
inputs = comp.co_names
control = [0]*len(inputs)
#Sequences of random boolean values to be used
random_list = gen_rand_bits(len(inputs))
for row in random_list:
valuedict = dict(zip(inputs, row))
answer = eval(comp, valuedict)
for column in range(len(row)):
row[column] = ~row[column]
newvaluedict = dict(zip(inputs, row))
newanswer = eval(comp, newvaluedict)
row[column] = ~row[column]
if answer != newanswer:
control[column] = control[column] + 1