Hmmm... Pointers are confusing at the beginning.
When you call Base *basePtr = new Derive();
, you are creating a Derive
object instance and just keeping a "bookmark" of where this object is, but with a Base
pointer.
When you do that, the only accessible properties (without a cast) will be from Base
class.
Why this is used? To abstract things. Imagine that you are coding something related to mugs, cups, glasses and jugs. Basically all types of those objects are make to store some kind of liquid. So I'll call the base class of LiquidContainer
:
class LiquidContainer
{
//...
};
class Mug : public LiquidContainer
{
//...
};
class Glass : public LiquidContainer
{
//...
};
class Cup : public LiquidContainer
{
//...
};
class Jug : public LiquidContainer
{
//...
};
All the others are inherited from LiquidContainer
, although the Jug, the Cup and the Mug could be created in a little more sophisticated inheritance tree.
Anyway, the intent of having a base class and using polymorphism is to avoid code replication and to abstract thins, allowing that all the LiquidContainer
family be treated almost the same way.
Take by example a more complete class definition.
class LiquidContainer
{
public:
LiquidContainer(unsigned int capacity, unsigned int color) :
mCapacity(capacity),
mColor(color)
{
}
unsigned int getCapacity() { return mCapacity; }
unsigned int getColor() { return mColor; }
virtual char* name() = 0;
protected:
unsigned int mCapacity;
unsigned int mColor;
};
class Mug : public LiquidContainer
{
public:
Mug() :
LiquidContainer( 250, 0xFFFF0000 ) // 250 ml yellow mug!
{
}
virtual char* name() { return "Mug"; }
};
class Glass : public LiquidContainer
{
public:
Glass() :
LiquidContainer( 200, 0x000000FF ) // 200 ml transparent glass!
{
}
virtual char* name() { return "Glass"; }
};
class Cup : public LiquidContainer
{
public:
Cup() :
LiquidContainer( 50, 0xFFFFFF00 ) // 50 ml white cup!
{
}
virtual char* name() { return "Cup"; }
};
class Jug : public LiquidContainer
{
public:
Jug() :
LiquidContainer( 1500, 0x0000FF00 ) // 1.5 l blue Jug!
{
}
virtual char* name() { return "Jug"; }
};
With those class definitions you could do the following test:
#include <iostream>
#include <vector>
int main( int argc, char* argv[] )
{
std::vector< LiquidContainer* > things;
things.push_back( new Mug() );
things.push_back( new Cup() );
things.push_back( new Glass() );
things.push_back( new Jug() );
for ( auto container : things )
{
std::cout << "This is a '" << container->name() << "' with capacity of " << container->getCapacity() << "ml and color " << container->getColor() << std::endl;
}
return 0;
}
This little program outputs
This is a 'Mug' with capacity of 250ml and color 4294901760
This is a 'Cup' with capacity of 50ml and color 4294967040
This is a 'Glass' with capacity of 200ml and color 255
This is a 'Jug' with capacity of 1500ml and color 65280
I hope that this little exercise are enough to show you why the polymorphism is used.