The problem you have is equivocating between char* and char[]. You can certainly assign a string literal to a char*, but you need to understand what the contents of a LISTING structure contain, and how you want to serialize and deserialize data to a file.
It does not make sense to save pointers from one process and read them into another process, so you probably want to save the contents (what a pointer points at). You want to store two values, (name, phone) to the file. Since you likely want to store the literal name and literal phone, let us consider what the file might look like:
roast duck|212-333-4444
peking duck|411-511-61111
duck soup|314-222-3333
free duck|800-111-2222
...
You need functions to serialize and deserialize your data. Since your LISTING type is pointers, you will need to allocate appropriate space for those values, as you read them, and you need functions (methods) to read serialized data from a file and write serialized data to a file.
Reading (you will need to allocate enough space),
int
listing_read(FILE*fp, LISTING* listing)
{
char name_buffer[100];
char phone_buffer[100];
if(!fp) return(-1);
if(!listing) return(-2);
int res = fscanf(fp,"%s|%s\n",name_buffer,phone_buffer);
if( !res ) {
//handle error here
}
//careful here, you cannot free if you didn't malloc/strdup
if(listing->name) free(listing->name);
if(listing->phone) free(listing->phone);
listing->name = strdup(name_buffer);
listing->phone = strdup(phone_buffer);
return(0);
}
Writing (you will need to provide proper formatting),
int
listing_write(FILE*fp, LISTING* listing)
{
if(!fp) return(-1);
if(!listing) return(-2);
fprintf(fp,"%s|%s\n",listing->name,listing->phone);
return(0);
}
Here is how you need to modify your code,
//read from a file
#include<stdio.h>
typedef struct
{
char* name;
char* phone;
}LISTING;
int main(void)
{
LISTING phoneList[14];
FILE* fp = NULL;
if( !(fp = fopen("/media/Study/PhoneDirectory.dat","rb")) ) {
printf("Error opening file!!!");
exit(1);
}
fseek(fp,0,SEEK_SET);
if( listing_read(fp,&phoneList[0]) >= 0 ) {
printf("%s %s",phoneList[0].name,phoneList[0].phone);
}
fclose(fp);
return 0;
}
And here is how writing the file would change,
//Write to file
#include<stdio.h>
typedef struct
{
char* name;
char* phone;
}LISTING;
int main(void)
{
LISTING phoneList[14];
FILE* fp = NULL;
if( !(fp = fopen("/media/Study/PhoneDirectory.dat","wb")) ) {
printf("error, cannot write file\n");
exit(1);
}
phoneList[0].name = "Santosh";
phoneList[0].phone = "9657681798";
if( listing_write(fp,&phoneList[0])>=0) {
printf("inserted");
}
fclose(fp);
return 0;
}
Note that in you writing program you assign the string literals "Santosh" and "9657681798" to the LISTING members name and phone. Though legal to do, you need a better understanding of what C does here. C takes the address of these C-string constants and assigns those addresses to the phonelist[1].name and phonelist[1].phone member pointers.
Consider that if you did this assignment,
phoneList[0].name = "Santosh";
phoneList[0].phone = "9657681798";
You have assigned the pointers to constant strings to your structure members.
But if you were to allocate space (for example, using strdup()),
phoneList[0].name = strdup("Santosh");
phoneList[0].phone = strdup("9657681798");
You have allocated space for the strings, assigning independent locations for these member elements. Which is is more likely what you want to do.
Note that I used phonelist[0] since C has zero-based arrays.