I have a C function that computes the values of 4 sines based on time elapsed. Using gprof, I figured that this function uses 100% (100.7% to be exact lol) of the CPU time.
void
update_sines(void)
{
clock_gettime(CLOCK_MONOTONIC, &spec);
s = spec.tv_sec;
ms = spec.tv_nsec * 0.0000001;
etime = concatenate((long)s, ms);
int k;
for (k = 0; k < 799; ++k)
{
double A1 = 145 * sin((RAND1 * k + etime) * 0.00333) + RAND5; // Amplitude
double A2 = 100 * sin((RAND2 * k + etime) * 0.00333) + RAND4; // Amplitude
double A3 = 168 * sin((RAND3 * k + etime) * 0.00333) + RAND3; // Amplitude
double A4 = 136 * sin((RAND4 * k + etime) * 0.00333) + RAND2; // Amplitude
double B1 = 3 + RAND1 + (sin((RAND5 * k) * etime) * 0.00216); // Period
double B2 = 3 + RAND2 + (sin((RAND4 * k) * etime) * 0.002); // Period
double B3 = 3 + RAND3 + (sin((RAND3 * k) * etime) * 0.00245); // Period
double B4 = 3 + RAND4 + (sin((RAND2 * k) * etime) * 0.002); // Period
double x = k; // Current x
double C1 = 0.6 * etime; // X axis move
double C2 = 0.9 * etime; // X axis move
double C3 = 1.2 * etime; // X axis move
double C4 = 0.8 * etime + 200; // X axis move
double D1 = RAND1 + sin(RAND1 * x * 0.00166) * 4; // Y axis move
double D2 = RAND2 + sin(RAND2 * x * 0.002) * 4; // Y axis move
double D3 = RAND3 + cos(RAND3 * x * 0.0025) * 4; // Y axis move
double D4 = RAND4 + sin(RAND4 * x * 0.002) * 4; // Y axis move
sine1[k] = A1 * sin((B1 * x + C1) * 0.0025) + D1;
sine2[k] = A2 * sin((B2 * x + C2) * 0.00333) + D2 + 100;
sine3[k] = A3 * cos((B3 * x + C3) * 0.002) + D3 + 50;
sine4[k] = A4 * sin((B4 * x + C4) * 0.00333) + D4 + 100;
}
}
And this is the output from gprof:
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
100.07 0.04 0.04
I'm currently getting a frame rate of roughly 30-31 fps using this. Now I figure there as to be a more efficient way to do this.
As you noticed I already changed all the divisions to multiplications but that had very little effect on performance.
How could I increase the performance of this math heavy function?