I want to efficiently calculate ((X+Y)!/(X!Y!))% P (P is like 10^9+7)
This discussion gives some insights on distributing modulo over division. My concern is it's not necessary that a modular inverse always exists for a number. Basically, I am looking for a code implementation of solving the problem.
For multiplication it is very straightforward:
public static int mod_mul(int Z,int X,int Y,int P)
{
// Z=(X+Y) the factorial we need to calculate, P is the prime
long result = 1;
while(Z>1)
{
result = (result*Z)%P
Z--;
}
return result;
}
I also realize that many factors can get cancelled in the division (before taking modulus), but if the number of divisors increase, then I'm finding it difficult to efficiently come up with an algorithm to divide. ( Looping over List(factors(X)+factors(Y)...) to see which divides current multiplying factor of numerator).
Edit: I don't want to use BigInt solutions.
Is there any java/python based solution or any standard algorithm/library for cancellation of factors( if inverse option is not full-proof) or approaching this type of problem.