Splitting the transformation in translation and rotation is a good start. Averaging the translation is trivial.
Averaging the rotation is not that easy. Most approaches will use quaternions. So you need to transform the rotation matrix to a quaternion.
The easiest way to approximate the average is a linear blending, followed by renormalization of the quaternion:
q* = w1 * q1 + w2 * q2 + ... + w2 * qn
normalize q*
However, this is only an approximation. The reason for that is that the combination of two rotations is not performed by adding the quaternions, but by multiplying them. If we convert quaternions to a logarithmic space, we can use a simple linear blend (because multiplication will become additions). Then transform the quaternion back to the original space. This is the idea of the Spherical Average (Buss 2001). If you're lucky, you find a library that supports log and exp of quaternions:
start with q* as above
do until convergence
for each input quaternion i (index)
diff = q[i] * inverse(q*)
u[i] = log(diff, base q*)
//Now perform the linear blend
adapt := zero quaternion
weights := 0
for each input quaternion i
adapt += weight[i] * u[i]
weights += weight[i]
adapt *= 1/weights
adaptInOriginalSpace = q* ^ adapt (^ is the power operator)
q* = adaptInOriginalSpace * q*
You can define a threshold for adaptInOriginalSpace
. If it is a very very small rotation, you can break the loop. This algorithm is proven to preserve geodesic distances on a sphere.