There are some issues:
- Iterating both sequences together requires a pair representing
references to the sequence elements - that pair, itself, is no
reference. Hence, algorithms working on references will not work.
- Performance will degenerate (the sequences are loosely coupled) -
An implementation using a pair of references and std::sort:
// Copyright (c) 2014 Dieter Lucking. Distributed under the Boost
// software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <algorithm>
#include <chrono>
#include <memory>
#include <iostream>
// None
// ============================================================================
/// A void type
struct None {
None()
{}
/// Explicit conversion to None.
template <typename T>
explicit None(const T&)
{}
template <typename T>
None& operator = (const T&) {
return *this;
}
/// Never null.
None* operator & () const;
};
extern None& none();
inline None* None::operator & () const { return &none(); }
None& none() {
static None result;
return result;
}
// IteratorAdaptorTraits
// ============================================================================
namespace Detail {
// IteratorAdaptorTraits
// =====================
template <typename Iterator, typename ReturnType, bool IsReference>
struct IteratorAdaptorTraits;
// No reference
// ============
template <typename Iterator, typename ReturnType>
struct IteratorAdaptorTraits<Iterator, ReturnType, false>
{
typedef Iterator iterator_type;
typedef ReturnType return_type;
typedef ReturnType value_type;
typedef None reference;
typedef None pointer;
static_assert(
! std::is_base_of<None, return_type>::value,
"None as return type.");
template <typename Accessor>
static return_type iterator_value(const Accessor& accessor, const Iterator& iterator) {
return accessor.value(iterator);
}
template <typename Accessor>
static pointer iterator_pointer(const Accessor& accessor, const Iterator& iterator) {
return &none();
}
};
// Reference
// =========
template <typename Iterator, typename ReturnType>
struct IteratorAdaptorTraits<Iterator, ReturnType, true>
{
typedef Iterator iterator_type;
typedef ReturnType return_type;
typedef typename std::remove_reference<ReturnType>::type value_type;
typedef ReturnType reference;
typedef value_type* pointer;
static_assert(
! std::is_base_of<None, return_type>::value,
"None as return type.");
template <typename Accessor>
static return_type iterator_value(const Accessor& accessor, const Iterator& iterator) {
return accessor.value(iterator);
}
template <typename Accessor>
static pointer iterator_pointer(const Accessor& accessor, const Iterator& iterator) {
return &accessor.value(iterator);
}
};
} // namespace Detail
// RandomAccessIteratorAdaptor
// ============================================================================
/// An adaptor around a random access iterator.
/// \ATTENTION The adaptor will not fulfill the standard iterator requierments,
/// if the accessor does not support references: In that case, the
/// reference and pointer type are None.
template <typename Iterator, typename Accessor>
class RandomAccessIteratorAdaptor
{
// Types
// =====
private:
static_assert(
! std::is_base_of<None, Accessor>::value,
"None as accessor.");
static_assert(
! std::is_base_of<None, typename Accessor::return_type>::value,
"None as return type.");
typedef typename Detail::IteratorAdaptorTraits<
Iterator,
typename Accessor::return_type,
std::is_reference<typename Accessor::return_type>::value
> Traits;
public:
typedef typename Traits::iterator_type iterator_type;
typedef Accessor accessor_type;
typedef typename std::random_access_iterator_tag iterator_category;
typedef typename std::ptrdiff_t difference_type;
typedef typename Traits::return_type return_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::reference reference;
typedef typename Traits::pointer pointer;
typedef typename accessor_type::base_type accessor_base_type;
typedef RandomAccessIteratorAdaptor<iterator_type, accessor_base_type> base_type;
// Tag
// ===
public:
struct RandomAccessIteratorAdaptorTag {};
// Construction
// ============
public:
explicit RandomAccessIteratorAdaptor(
iterator_type iterator, const accessor_type& accessor = accessor_type())
: m_iterator(iterator), m_accessor(accessor)
{}
template <typename IteratorType, typename AccessorType>
explicit RandomAccessIteratorAdaptor(const RandomAccessIteratorAdaptor<
IteratorType, AccessorType>& other)
: m_iterator(other.iterator()), m_accessor(other.accessor())
{}
// Element Access
// ==============
public:
/// The underlaying accessor.
const accessor_type& accessor() const { return m_accessor; }
/// The underlaying iterator.
const iterator_type& iterator() const { return m_iterator; }
/// The underlaying iterator.
iterator_type& iterator() { return m_iterator; }
/// The underlaying iterator.
operator iterator_type () const { return m_iterator; }
/// The base adaptor.
base_type base() const {
return base_type(m_iterator, m_accessor.base());
}
// Iterator
// ========
public:
return_type operator * () const {
return Traits::iterator_value(m_accessor, m_iterator);
}
pointer operator -> () const {
return Traits::iterator_pointer(m_accessor, m_iterator);
}
RandomAccessIteratorAdaptor increment() const {
return ++RandomAccessIteratorAdaptor(*this);
}
RandomAccessIteratorAdaptor increment_n(difference_type n) const {
RandomAccessIteratorAdaptor tmp(*this);
tmp.m_iterator += n;
return tmp;
}
RandomAccessIteratorAdaptor decrement() const {
return --RandomAccessIteratorAdaptor(*this);
}
RandomAccessIteratorAdaptor decrement_n(difference_type n) const {
RandomAccessIteratorAdaptor tmp(*this);
tmp.m_iterator -= n;
return tmp;
}
RandomAccessIteratorAdaptor& operator ++ () {
++m_iterator;
return *this;
}
RandomAccessIteratorAdaptor operator ++ (int) {
RandomAccessIteratorAdaptor tmp(*this);
++m_iterator;
return tmp;
}
RandomAccessIteratorAdaptor& operator += (difference_type n) {
m_iterator += n;
return *this;
}
RandomAccessIteratorAdaptor& operator -- () {
--m_iterator;
return *this;
}
RandomAccessIteratorAdaptor operator -- (int) {
RandomAccessIteratorAdaptor tmp(*this);
--m_iterator;
return tmp;
}
RandomAccessIteratorAdaptor& operator -= (difference_type n) {
m_iterator -= n;
return *this;
}
bool equal(const RandomAccessIteratorAdaptor& other) const {
return this->m_iterator == other.m_iterator;
}
bool less(const RandomAccessIteratorAdaptor& other) const {
return this->m_iterator < other.m_iterator;
}
bool less_equal(const RandomAccessIteratorAdaptor& other) const {
return this->m_iterator <= other.m_iterator;
}
bool greater(const RandomAccessIteratorAdaptor& other) const {
return this->m_iterator > other.m_iterator;
}
bool greater_equal(const RandomAccessIteratorAdaptor& other) const {
return this->m_iterator >= other.m_iterator;
}
private:
iterator_type m_iterator;
accessor_type m_accessor;
};
template <typename Iterator, typename Accessor>
inline RandomAccessIteratorAdaptor<Iterator, Accessor> operator + (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& i,
typename RandomAccessIteratorAdaptor<Iterator, Accessor>::difference_type n) {
return i.increment_n(n);
}
template <typename Iterator, typename Accessor>
inline RandomAccessIteratorAdaptor<Iterator, Accessor> operator - (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& i,
typename RandomAccessIteratorAdaptor<Iterator, Accessor>::difference_type n) {
return i.decrement_n(n);
}
template <typename Iterator, typename Accessor>
inline typename RandomAccessIteratorAdaptor<Iterator, Accessor>::difference_type
operator - (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.iterator() - b.iterator();
}
template <typename Iterator, typename Accessor>
inline bool operator == (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.equal(b);
}
template <typename Iterator, typename Accessor>
inline bool operator != (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return ! a.equal(b);
}
template <typename Iterator, typename Accessor>
inline bool operator < (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.less(b);
}
template <typename Iterator, typename Accessor>
inline bool operator <= (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.less_equal(b);
}
template <typename Iterator, typename Accessor>
inline bool operator > (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.greater(b);
}
template <typename Iterator, typename Accessor>
inline bool operator >= (
const RandomAccessIteratorAdaptor<Iterator, Accessor>& a,
const RandomAccessIteratorAdaptor<Iterator, Accessor>& b) {
return a.greater_equal(b);
}
// ElementPair
// ============================================================================
/// A pair of references which can mutate to a pair of values.
/// \NOTE If the key is one or two the pair is less comparable
/// regarding the first or second element.
template <typename First, typename Second, unsigned Key = 0>
class ElementPair
{
// Types
// =====
public:
typedef First first_type;
typedef Second second_type;
// Construction
// ============
public:
/// Reference
/// \POSTCONDITION reference() returns true
ElementPair(first_type& first, second_type& second)
: m_first(&first), m_second(&second)
{}
/// Copy construction
/// \POSTCONDITION reference() returns false
ElementPair(const ElementPair& other)
: m_first(new(m_first_storage) first_type(*other.m_first)),
m_second(new(&m_second_storage) second_type(*other.m_second))
{}
/// Move construction
/// \POSTCONDITION reference() returns false
ElementPair(ElementPair&& other)
: m_first(new(m_first_storage) first_type(std::move(*other.m_first))),
m_second(new(m_second_storage) second_type(std::move(*other.m_second)))
{}
~ElementPair() {
if( ! reference()) {
reinterpret_cast<first_type*>(m_first_storage)->~first_type();
reinterpret_cast<second_type*>(m_second_storage)->~second_type();
}
}
// Assignment
// ==========
public:
/// Swap content.
void swap(ElementPair& other) {
std::swap(*m_first, *other.m_first);
std::swap(*m_second, *other.m_second);
}
/// Assign content.
ElementPair& operator = (const ElementPair& other) {
if(&other != this) {
*m_first = *other.m_first;
*m_second = *other.m_second;
}
return *this;
}
/// Assign content.
ElementPair& operator = (ElementPair&& other) {
if(&other != this) {
*m_first = std::move(*other.m_first);
*m_second = std::move(*other.m_second);
}
return *this;
}
// Element Access
// ==============
public:
/// True if the pair holds references to external elements.
bool reference() {
return (m_first != reinterpret_cast<first_type*>(m_first_storage));
}
const first_type& first() const { return *m_first; }
first_type& first() { return *m_first; }
const second_type& second() const { return *m_second; }
second_type& second() { return *m_second; }
private:
first_type* m_first;
typename std::aligned_storage<
sizeof(first_type),
std::alignment_of<first_type>::value>::type
m_first_storage[1];
second_type* m_second;
typename std::aligned_storage<
sizeof(second_type),
std::alignment_of<second_type>::value>::type
m_second_storage[1];
};
// Compare
// =======
template <typename First, typename Second>
inline bool operator < (
const ElementPair<First, Second, 1>& a,
const ElementPair<First, Second, 1>& b)
{
return (a.first() < b.first());
}
template <typename First, typename Second>
inline bool operator < (
const ElementPair<First, Second, 2>& a,
const ElementPair<First, Second, 2>& b)
{
return (a.second() < b.second());
}
// Swap
// ====
namespace std {
template <typename First, typename Second, unsigned Key>
inline void swap(
ElementPair<First, Second, Key>& a,
ElementPair<First, Second, Key>& b)
{
a.swap(b);
}
}
// SequencePairAccessor
// ============================================================================
template <typename FirstSequence, typename SecondSequence, unsigned Keys = 0>
class SequencePairAccessor
{
// Types
// =====
public:
typedef FirstSequence first_sequence_type;
typedef SecondSequence second_sequence_type;
typedef typename first_sequence_type::size_type size_type;
typedef typename first_sequence_type::value_type first_type;
typedef typename second_sequence_type::value_type second_type;
typedef typename first_sequence_type::iterator iterator;
typedef None base_type;
typedef ElementPair<first_type, second_type, Keys> return_type;
// Construction
// ============
public:
SequencePairAccessor(first_sequence_type& first, second_sequence_type& second)
: m_first_sequence(&first), m_second_sequence(&second)
{}
// Element Access
// ==============
public:
base_type base() const { return base_type(); }
return_type value(iterator pos) const {
return return_type(*pos, (*m_second_sequence)[pos - m_first_sequence->begin()]);
}
// Data
// ====
private:
first_sequence_type* m_first_sequence;
second_sequence_type* m_second_sequence;
};
This test shows a degenaration of performance (on my system) by a factor of 1.5 for const char* and a factor of 3.4 for a std::string (compared to a single vector holding std::pair(s)).
// Test
// ============================================================================
#define SAMPLE_SIZE 1e1
#define VALUE_TYPE const char*
int main() {
const unsigned samples = SAMPLE_SIZE;
typedef int key_type;
typedef VALUE_TYPE value_type;
typedef std::vector<key_type> key_sequence_type;
typedef std::vector<value_type> value_sequence_type;
typedef SequencePairAccessor<key_sequence_type, value_sequence_type, 1> accessor_type;
typedef RandomAccessIteratorAdaptor<
key_sequence_type::iterator,
accessor_type>
iterator_adaptor_type;
key_sequence_type keys;
value_sequence_type values;
keys.reserve(samples);
values.reserve(samples);
const char* words[] = { "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine" };
for(unsigned i = 0; i < samples; ++i) {
key_type k = i % 10;
keys.push_back(k);
values.push_back(words[k]);
}
accessor_type accessor(keys, values);
std::random_shuffle(
iterator_adaptor_type(keys.begin(), accessor),
iterator_adaptor_type(keys.end(), accessor)
);
if(samples <= 10) {
std::cout << "\nRandom:\n"
<< "======\n";
for(unsigned i = 0; i < keys.size(); ++i)
std::cout << keys[i] << ": " << values[i] << '\n';
}
typedef std::pair<key_type, value_type> pair_type;
std::vector<pair_type> ref;
for(const auto& k: keys) {
ref.push_back(pair_type(k, words[k]));
}
struct Less {
bool operator () (const pair_type& a, const pair_type& b) const {
return a.first < b.first;
}
};
auto ref_start = std::chrono::system_clock::now();
std::sort(ref.begin(), ref.end(), Less());
auto ref_end = std::chrono::system_clock::now();
auto ref_elapsed = double((ref_end - ref_start).count())
/ std::chrono::system_clock::period::den;
auto start = std::chrono::system_clock::now();
std::sort(
iterator_adaptor_type(keys.begin(), accessor),
iterator_adaptor_type(keys.end(), accessor)
);
auto end = std::chrono::system_clock::now();
auto elapsed = double((end - start).count())
/ std::chrono::system_clock::period::den;;
if(samples <= 10) {
std::cout << "\nSorted:\n"
<< "======\n";
for(unsigned i = 0; i < keys.size(); ++i)
std::cout << keys[i] << ": " << values[i] << '\n';
}
std::cout << "\nDuration sorting " << double(samples) << " samples:\n"
<< "========\n"
<< " One Vector: " << ref_elapsed << '\n'
<< "Two Vectors: " << elapsed << '\n'
<< " Factor: " << elapsed/ref_elapsed << '\n'
<< '\n';
}
(Please adjust SAMPLE_SIZE and VALUE_TYPE)
My conclusion is a sorted view into a sequence of unsorted data might be more aprropiate (but that violates the requirement of the question).