I am trying to learn rvalue references, as an exercise I tried to do answer the following.
Is it possible to write a function that can tell (at least at runtime, better if at compile time) if the passed value is a value (non reference), a rvalue or an lvalue? for a generic type? I want to extract as much information about the type as possible.
An alternative statement of the problem could be:
Can I have a typeid
-like function that can tell as much as possible about the calling expression?, for example (and ideally) if the type is T
, T&
, T const&
, or T&&
.
Currently, for example, typeid
drops some information about the type and one can do better (as in the example the const and non-const reference are distiguished). But how much better than typeid
can one possibly do?
This is my best attempt so far. It can't distinguish between a rvalue and a "constant". First and second case in the example).
Maybe distiguishing case 1 and 2 is not possible in any circumstance? since both are ultimately rvalue? the the question is Even if both are rvalues can the two cases trigger different behavior?
In any case, it seems I overcomplicated the solution as I needed to resort to rvalue conditional casts, and ended up with this nasty code and not even 100% there.
#include<iostream>
#include<typeinfo>
template<class T>
void qualified_generic(T&& t){
std::clog << __PRETTY_FUNCTION__ << std::endl;
std::clog
<< typeid(t).name() // ok, it drops any qualification
<< (std::is_const<typename std::remove_reference<decltype(std::forward<T>(t))>::type>::value?" const":"") // seems to detect constness rigth
<< (std::is_lvalue_reference<decltype(std::forward<T>(t))>::value?"&":"")
<< (std::is_rvalue_reference<decltype(std::forward<T>(t))>::value?"&&":"") // cannot distiguish between passing a constant and an rvalue expression
<< std::endl
;
}
using namespace std;
int main(){
int a = 5;
int const b = 5;
qualified_generic(5); // prints "int&&", would plain "int" be more appropriate?
qualified_generic(a+1); // prints "int&&" ok
qualified_generic(a); // print "int&", ok
qualified_generic(b); // print "int const&", ok
}
Maybe the ultimate solution to distiguish between the cases will involve detecting a constexpr
.
UPDATE: I found this talk by Scott Meyers where he claims that "The Standard sometimes requires typeid
to give the 'wrong' answer". http://vimeo.com/97344493 about minute 44. I wonder if this is one of the cases.
UPDATE 2015: I revisited the problem using Boost TypeIndex and the result is still the same. For example using:
template<class T>
std::string qualified_generic(T&& t){
return boost::typeindex::type_id_with_cvr<decltype(t)>().pretty_name();
// or return boost::typeindex::type_id_with_cvr<T>().pretty_name();
// or return boost::typeindex::type_id_with_cvr<T&&>().pretty_name();
// or return boost::typeindex::type_id_with_cvr<T&>().pretty_name();
}
Still it is not possible to distinguish the type of 5
and a+1
in the above example.