(Background: I'd like to control a light source with a motion sensor. Light should turn off x minutes after last detected motion. The framework is in place, scheduling is what remains to be done.)
Currently, when motion is detected the light gets turned on and a job to turn it off in 'now + x minutes' is scheduled. Whenever motion is detected during the x minutes the job gets removed from the queue and a new one is set up, extending effectively the time the light stays on.
I tried the "at" command but job handling is quite clunky. Whenever a job is removed from the queue an email gets sent. I looked at the Python crontab module but it would need much additional programming (handling relative time, removing old cronjobs, etc.) and seems to be slower.
What are my alternatives (bash, python, perl)?
-- Edit: My python skills are at beginner level, here's what I put together:
#!/usr/bin/env python2.7
# based on http://raspi.tv/2013/how-to-use-interrupts-with-python-on-the-raspberry-pi-and-rpi-gpio-part-2
# more than 160 seconds without activity are required to re-trigger action
import time
from subprocess import call
import os
import RPi.GPIO as GPIO
PIR = 9 # data pin of PIR sensor (in)
LED = 7 # positive pin of LED (out)
timestamp = '/home/pi/events/motiontime' # file to store last motion detection time (in epoch)
SOUND = '/home/pi/events/sounds/Hello.wav' # reaction sound
# GPIO setup
GPIO.setmode(GPIO.BCM)
GPIO.setup(PIR,GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(LED,GPIO.OUT)
# function which gets called when motion is reported (sensor includes own delay-until-hot again
# and sensibility settings
def my_callback(channel):
now = time.time() # store current epoch time in variable 'now'
f = open(timestamp, "r")
then = float(f.readline()) # read last detection time from file
difference = now - then # calculate time that has passed
call(['/home/pi/bin/kitchenlights.sh', '-1']) # turn light on
call(['/home/pi/bin/lighttimer.sh']) # schedule at job to turn lights off
if difference > 160: # if more than 160 seconds without activity have passed then...
GPIO.output(LED, True) # turn on LED
if not os.path.isfile("/home/pi/events/muted"): # check if system is muted, else
call(['/usr/bin/mplayer', '-really-quiet', '-noconsolecontrols', SOUND]) # play sound
GPIO.output(LED, False) # turn of LED
f = open(timestamp, "w")
f.write(repr(now)) # update timestamp
f.close()
else: # when less than 160 seconds have passed do nothing and
f = open(timestamp, "w")
f.write(repr(now)) # update timestamp (thus increasing the interval of silence)
f.close()
GPIO.add_event_detect(PIR, GPIO.RISING,callback=my_callback,bouncetime=100) # add rising edge detection on a channel
while True:
time.sleep(0.2)
pass
Now that questions come in I think I could put a countdown in the while loop, right? How would that work?