Elsewhere I've answered a similar Date Packing question with
a geometric strategy. Namely, I interperet the date ranges
as a line, and utilize geometry::UnionAggregate
to merge
the ranges.
Your question has two peculiarities though. First, it calls
for sql-server-2008. geometry::UnionAggregate
is not then
avialable. However, download the microsoft library at
https://github.com/microsoft/SQLServerSpatialTools and load
it in as a clr assembly to your instance and you have it
available as dbo.GeometryUnionAggregate
.
But the real peculiarity that has my interest is the concern
that you have several million rows to work with. So I thought
I'd repeat the strategy here but with an added technique to
improve it's performance. This technique will work well if
you have a lot of your StaffID/date subsets that are the same.
First, let's build a numbers table. Swap this out with your favorite
way to do it.
select i = row_number() over (order by (select null))
into #numbers
from @services; -- where i put your data
Then convert the dates to floats and use those floats to create
geometrical points.
These points can then be turned into lines via STUnion and STEnvelope.
With your ranges now represented as geometric lines, merge them via
UnionAggregate
. The resulting geometry object 'lines' might contain
multiple lines. But any overlapping lines turn into one line.
select s.StaffID,
s.Date,
linesWKT = geometry::UnionAggregate(line).ToString()
-- If you have SQLSpatialTools installed then:
-- linesWKT = dbo.GeometryUnionAggregate(line).ToString()
into #aggregateRangesToGeo
from @services s
cross apply (select
beginTimeF = convert(float, convert(datetime,beginTime)),
endTimeF = convert(float, convert(datetime,endTime))
) prepare
cross apply (select
beginPt = geometry::Point(beginTimeF, 0, 0),
endPt = geometry::Point(endTimeF, 0, 0)
) pointify
cross apply (select
line = beginPt.STUnion(endPt).STEnvelope()
) lineify
group by s.StaffID,
s.Date;
You have one 'lines' object for each staffId/date combo. But depending
on your dataset, there may be many 'lines' objects that are the same
between these combos. This may very well be true if staff are expected
to follow a routine and data is recorded to the nearest whatever.
So get a distinct lising of 'lines' objects. This should improve
performance.
From this, extract the individual lines inside 'lines'. Envelope the lines,
which ensures that the lines are stored only as their endpoints. Read the
endpoint x values and convert them back to their time representations.
Keep the WKT representation to join it back to the combos later on.
select lns.linesWKT,
beginTime = convert(time, convert(datetime, ap.beginTime)),
endTime = convert(time, convert(datetime, ap.endTime))
into #parsedLines
from (select distinct linesWKT from #aggregateRangesToGeo) lns
cross apply (select
lines = geometry::STGeomFromText(linesWKT, 0)
) geo
join #numbers n on n.i between 1 and geo.lines.STNumGeometries()
cross apply (select
line = geo.lines.STGeometryN(n.i).STEnvelope()
) ln
cross apply (select
beginTime = ln.line.STPointN(1).STX,
endTime = ln.line.STPointN(3).STX
) ap;
Now just join your parsed data back to the StaffId/Date combos.
select ar.StaffID,
ar.Date,
pl.beginTime,
pl.endTime
from #aggregateRangesToGeo ar
join #parsedLines pl on ar.linesWKT = pl.linesWKT
order by ar.StaffID,
ar.Date,
pl.beginTime;