First things first: do not write
char name[sizeof(char)*10];
You do not need the sizeof
as part of the array declaration. Just write
char name[10];
This declares an array of 10 elements of type char
. Just as
int values[10];
declares an array of 10 elements of type int
. The compiler knows how much space to allocate based on the type and number of elements.
If you know you'll never need more than N elements, then yes, you can declare an array of that size and be done with it, but:
You run the risk of internal fragmentation; your maximum number of bytes may be N, but the average number of bytes you need may be much smaller than that. For example, let's say you want to store 1000 strings of max length 255, so you declare an array like
char strs[1000][256];
but it turns out that 900 of those strings are only 20 bytes long; you're wasting a couple of hundred kilobytes of space1. If you split the difference and stored 1000 pointers, then allocated only as much space as was necessary to store each string, then you'd wind up wasting a lot less memory:
char *strs[1000];
...
strs[i] = strdup("some string"); // strdup calls malloc under the hood
...
Stack space is also limited relative to heap space; you may not be able to declare arbitrarily large arrays (as auto
variables, anway). A request like
long double huge[10000][10000][10000][10000];
will probably cause your code to crash at runtime, because the default stack size isn't large enough to accomodate it2.
And finally, most situations fall into one of three categories: you have 0 elements, you have exactly 1 element, or you have an unlimited number of elements. Allocating large enough arrays to cover "all possible scenarios" just doesn't work. Been there, done that, got the T-shirt in multiple sizes and colors.
1. Yes, we live in the future where we have gigabytes of address space available, so wasting a couple of hundred KB doesn't seem like a big deal. The point is still valid, you're wasting space that you don't have to.
2. You could declare very large arrays at file scope or with the static
keyword; this will allocate the array in a different memory segment (neither stack nor heap). The problem is that you only have that single instance of the array; if your function is meant to be re-entrant, this won't work.