When discussing computational complexity, it seems everyone generally goes straight to Big O.
Lets say for example I have a hybrid algorithm such as merge sort which uses insertion sort for smaller subarrays (I believe this is called tiled merge sort). It's still ultimately merge sort with O(n log n), but I want to discuss the behaviour/characteristics of the algorithm for small n, in cases where no merging actually takes place.
For all intents and purposes the tiled merge sort is insertion sort, executing exactly the same instructions for the domain of my small n. However, Big O deals with the large and asymptotic cases and discussing Big O for small n is pretty much an oxymoron. People have yelled at me for even thinking the words "behaves like an O(n^2) algorithm in such cases". What is the correct way to describe the algorithm's behaviour in cases of small n within the context of formal theoretical computational analysis? To clarify, not just in the case where n is small, but in the case where n is never big.
One might say that for such small n it doesn't matter but I'm interested in the cases where it does, for example with a large constant such as being executed many times, and where in practice it would show a clear trend and be the dominant factor. For example the initial quadratic growth seen in the graph below. I'm not dismissing Big O, more asking for a way to properly tell both sides of the story.
[EDIT]
If for "small n", constants can easily remove all trace of a growth rate then either
- only the asymptotic case is discussed, in which case there is less relevance to any practical application, or
- there must be a threshold at which we agree n is no longer "small".
What about the cases where n is not "small" (n is sufficiently big that the growth rate will not to affected significantly by any practical constant), but not yet big enough to show the final asymptotic growth rate so only sub growth rates are visible (for example the shape in the image above)?
Are there no practical algorithms that exhibit this behaviour? Even if there aren't, theoretical discussion should still be possible. Do we measure instead of discussing the theory purely because that's "what one should do"? If some behaviour is observed in all practical cases, why can't there be theory that's meaningful?
Let me turn the question around the other way. I have a graph that shows segmented super-linear steps. It sounds like many people would say "this is a pure coincidence, it could be any shape imaginable" (at the extreme of course) and wouldn't bat an eyelid if it were a sine wave instead. I know in many cases the shape could be hidden by constants, but here it's quite obvious. How can I give a formal explanation of why the graph produces this shape?
I particularly like @Sneftel's words "imprecise but useful guidance".
I know Big O and asymptotic analysis isn't applicable. What is? How far can I take it?