I'm following this paper(PDF via RG) in my indoor navigation project to determine user dynamics(static, slow walking, fast walking) via merely accelerometer data in order to assist location determination.
Here is the algorithm proposed in the project:

And here is my implementation in Swift 2.0:
import CoreMotion
let motionManager = CMMotionManager()
motionManager.accelerometerUpdateInterval = 0.1
motionManager.startAccelerometerUpdatesToQueue(NSOperationQueue.mainQueue()) { (accelerometerData: CMAccelerometerData?, error: NSError?) -> Void in
if((error) != nil) {
print(error)
} else {
self.estimatePedestrianStatus((accelerometerData?.acceleration)!)
}
}
After all of the classic Swifty iOS code to initiate CoreMotion, here is the method crunching the numbers and determining the state:
func estimatePedestrianStatus(acceleration: CMAcceleration) {
// Obtain the Euclidian Norm of the accelerometer data
accelerometerDataInEuclidianNorm = sqrt((acceleration.x.roundTo(roundingPrecision) * acceleration.x.roundTo(roundingPrecision)) + (acceleration.y.roundTo(roundingPrecision) * acceleration.y.roundTo(roundingPrecision)) + (acceleration.z.roundTo(roundingPrecision) * acceleration.z.roundTo(roundingPrecision)))
// Significant figure setting
accelerometerDataInEuclidianNorm = accelerometerDataInEuclidianNorm.roundTo(roundingPrecision)
// record 10 values
// meaning values in a second
// accUpdateInterval(0.1s) * 10 = 1s
while accelerometerDataCount < 1 {
accelerometerDataCount += 0.1
accelerometerDataInASecond.append(accelerometerDataInEuclidianNorm)
totalAcceleration += accelerometerDataInEuclidianNorm
break // required since we want to obtain data every acc cycle
}
// when acc values recorded
// interpret them
if accelerometerDataCount >= 1 {
accelerometerDataCount = 0 // reset for the next round
// Calculating the variance of the Euclidian Norm of the accelerometer data
let accelerationMean = (totalAcceleration / 10).roundTo(roundingPrecision)
var total: Double = 0.0
for data in accelerometerDataInASecond {
total += ((data-accelerationMean) * (data-accelerationMean)).roundTo(roundingPrecision)
}
total = total.roundTo(roundingPrecision)
let result = (total / 10).roundTo(roundingPrecision)
print("Result: \(result)")
if (result < staticThreshold) {
pedestrianStatus = "Static"
} else if ((staticThreshold < result) && (result <= slowWalkingThreshold)) {
pedestrianStatus = "Slow Walking"
} else if (slowWalkingThreshold < result) {
pedestrianStatus = "Fast Walking"
}
print("Pedestrian Status: \(pedestrianStatus)\n---\n\n")
// reset for the next round
accelerometerDataInASecond = []
totalAcceleration = 0.0
}
}
Also I've used the following extension to simplify significant figure setting:
extension Double {
func roundTo(precision: Int) -> Double {
let divisor = pow(10.0, Double(precision))
return round(self * divisor) / divisor
}
}
With raw values from CoreMotion, the algorithm was haywire.
Hope this helps someone.
EDIT (4/3/16)
I forgot to provide my roundingPrecision
value. I defined it as 3. It's just plain mathematics that that much significant value is decent enough. If you like you provide more.
Also one more thing to mention is that at the moment, this algorithm requires the iPhone to be in your hand while walking. See the picture below. Sorry this was the only one I could find.

My GitHub Repo hosting Pedestrian Status