Is this an analytical or numerical problem?
If it's numerical, use scipy.signal.devconvolve: http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.deconvolve.html
From the docs:
>>> from scipy import signal
>>> sig = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1,])
>>> filter = np.array([1,1,0])
>>> res = signal.convolve(sig, filter)
>>> signal.deconvolve(res, filter)
(array([ 0., 0., 0., 0., 0., 1., 1., 1., 1.]),
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]))
Otherwise, if you want an analytic solution, you might be using the wrong tool.
Additionally, just a tip for future google-ing, when you're talking about convolution, the action is usually/often "convolved" not "convoluted", see https://english.stackexchange.com/questions/64046/convolve-vs-convolute