For a university lecture I am looking for floating point algorithms with known asymptotic runtime, but potential for low-level (micro-)optimization. This means optimizations such as minimizing cache misses and register spillages, maximizing instruction level parallelism and taking advantage of SIMD (vector) instructions on new CPUs. The optimizations are going to be CPU-specific and will make use of applicable instruction set extensions.
The classic textbook example for this is matrix multiplication, where great speedups can be achieved by simply reordering the sequence of memory accesses (among other tricks). Another example is FFT. Unfortunately, I am not allowed to choose either of these.
Anyone have any ideas, or an algorithm/method that could use a boost?
I am only interested in algorithms where a per-thread speedup is conceivable. Parallelizing problems by multi-threading them is fine, but not the scope of this lecture.
Edit 1: I am taking the course, not teaching it. In the past years, there were quite a few projects that succeeded in surpassing the current best implementations in terms of performance.
Edit 2: This paper lists (from page 11 onwards) seven classes of important numerical methods and some associated algorithms that use them. At least some of the mentioned algorithms are candidates, it is however difficult to see which.
Edit 3: Thank you everyone for your great suggestions! We proposed to implement the exposure fusion algorithm (paper from 2007) and our proposal was accepted. The algorithm creates HDR-like images and consists mainly of small kernel convolutions followed by weighted multiresolution blending (on the Laplacian pyramid) of the source images. Interesting for us is the fact that the algorithm is already implemented in the widely used Enfuse tool, which is now at version 4.1. So we will be able to validate and compare our results with the original and also potentially contribute to the development of the tool itself. I will update this post in the future with the results if I can.