According to author of these events, they defined loosely and are approximated by available CPU performance counters. As I know, perf doesn't support formulas to calculate some synthetic event based on several hardware events, so it can't use front-end/back-end stall bound method from Intel's Optimization manual (Implemented in VTune) http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf "B.3.2 Hierarchical Top-Down Performance Characterization Methodology"
%FE_Bound = 100 * (IDQ_UOPS_NOT_DELIVERED.CORE / N );
%Bad_Speculation = 100 * ( (UOPS_ISSUED.ANY – UOPS_RETIRED.RETIRE_SLOTS + 4 * INT_MISC.RECOVERY_CYCLES ) / N) ;
%Retiring = 100 * ( UOPS_RETIRED.RETIRE_SLOTS/ N) ;
%BE_Bound = 100 * (1 – (FE_Bound + Retiring + Bad_Speculation) ) ;
N = 4*CPU_CLK_UNHALTED.THREAD" (for SandyBridge)
Right formulas can be used with some external scripting, like it was done in Andi Kleen's pmu-tools (toplev.py
): https://github.com/andikleen/pmu-tools (source), http://halobates.de/blog/p/262 (description):
% toplev.py -d -l2 numademo 100M stream
...
perf stat --log-fd 4 -x, -e
{r3079,r19c,r10401c3,r100030d,rc5,r10e,cycles,r400019c,r2c2,instructions}
{r15e,r60006a3,r30001b1,r40004a3,r8a2,r10001b1,cycles}
numademo 100M stream
...
BE Backend Bound: 72.03%
This category reflects slots where no uops are being delivered due to a lack
of required resources for accepting more uops in the Backend of the pipeline.
.....
FE Frontend Bound: 54.07%
This category reflects slots where the Frontend of the processor undersupplies
its Backend.
Commit which introduced stalled-cycles-frontend and stalled-cycles-backend events instead of original universal stalled-cycles
:
http://git.kernel.org/cgit/linux/kernel/git/tip/tip.git/commit/?id=8f62242246351b5a4bc0c1f00c0c7003edea128a
author Ingo Molnar <mingo@el...> 2011-04-29 11:19:47 (GMT)
committer Ingo Molnar <mingo@el...> 2011-04-29 12:23:58 (GMT)
commit 8f62242246351b5a4bc0c1f00c0c7003edea128a (patch)
tree 9021c99956e0f9dc64655aaa4309c0f0fdb055c9
parent ede70290046043b2638204cab55e26ea1d0c6cd9 (diff)
perf events: Add generic front-end and back-end stalled cycle event definitions
Add two generic hardware events: front-end and back-end stalled cycles.
These events measure conditions when the CPU is executing code but its
capabilities are not fully utilized. Understanding such situations and
analyzing them is an important sub-task of code optimization workflows.
Both events limit performance: most front end stalls tend to be caused
by branch misprediction or instruction fetch cachemisses, backend
stalls can be caused by various resource shortages or inefficient
instruction scheduling.
Front-end stalls are the more important ones: code cannot run fast
if the instruction stream is not being kept up.
An over-utilized back-end can cause front-end stalls and thus
has to be kept an eye on as well.
The exact composition is very program logic and instruction mix
dependent.
We use the terms 'stall', 'front-end' and 'back-end' loosely and
try to use the best available events from specific CPUs that
approximate these concepts.
Cc: Peter Zijlstra
Cc: Arnaldo Carvalho de Melo
Cc: Frederic Weisbecker
Link: http://lkml.kernel.org/n/tip-7y40wib8n000io7hjpn1dsrm@git.kernel.org
Signed-off-by: Ingo Molnar
/* Install the stalled-cycles event: UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
- intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES] = 0x1803fb1;
+ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
- PERF_COUNT_HW_STALLED_CYCLES = 7,
+ PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
+ PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,