First let's reduce this problem to integers rather than real numbers, otherwise we won't get a fast optimal algorithm out of this. For example, let's multiply all numbers by 100 and then just round it to the next integer. So say we have item sizes x1, ..., xn and target size Y. We want to minimize the value
k1 x1 + ... + kn xn - Y
under the conditions
(1) ki is a non-positive integer for all n ≥ i ≥ 1
(2) k1 x1 + ... + kn xn - Y ≥ 0
One simple algorithm for this would be to ask a series of questions like
- Can we achieve k1 x1 + ... + kn xn = Y + 0?
- Can we achieve k1 x1 + ... + kn xn = Y + 1?
- Can we achieve k1 x1 + ... + kn xn = Y + z?
- etc. with increasing z
until we get the answer "Yes". All of these problems are instances of the Knapsack problem with the weights set equal to the values of the items. The good news is that we can solve all those at once, if we can establish an upper bound for z. It's easy to show that there is a solution with z ≤ Y, unless all the xi are larger than Y, in which case the solution is just to pick the smallest xi.
So let's use the pseudopolynomial dynamic programming approach to solve Knapsack: Let f(i,j) be 1 iif we can reach total item size j with the first i items (x1, ..., xi). We have the recurrence
f(0,0) = 1
f(0,j) = 0 for all j > 0
f(i,j) = f(i - 1, j) or f(i - 1, j - x_i) or f(i - 1, j - 2 * x_i) ...
We can solve this DP array in O(n * Y) time and O(Y) space. The result will be the first j ≥ Y with f(n, j) = 1.
There are a few technical details that are left as an exercise to the reader:
- How to implement this in Java
- How to reconstruct the solution if needed. This can be done in O(n) time using the DP array (but then we need O(n * Y) space to remember the whole thing).