I want to point out that Nasm "knows" certain section names - ".text", ".data", and ".bss" (a couple others that you don't need yet). The leading '.' is required, and the names are case sensitive. Using other names, as you've done in your first example, may "work" but may not give you the "attributes" you want. For example, section .programDatais going to be read-only. Since you don't try to write to it this isn't going to do any harm... but
section .data` is supposed to be writable.
Trying to learn asm for Linux without being able to try it out must be difficult. Maybe that online site is enough for you. There's a thing called "andlinux" (I think) that will let you run Linux programs in Windows. Or you could run Linux in a "virtual machine". Or you could carve out a parttion on one of your many spare drives and actually install Linux.
For DOS, there's DosBox... or you could install "real DOS" on one of those extra partitions. From there, you can write "direct to screen" at B800h:xxxx. (one byte for "character" and the next for "color"). If you want to do this "without help from the OS", that may be what you want. In a protected mode OS, forget it. They're protected from US!
Maybe you just want to know how to write a subroutine, in general. We could write a subroutine with "msg" and "len" hard coded into it - not very flexible. Or we could write a subroutine that takes two parameters - either in registers or on the stack. Or we could write a subroutine that expects a zero-terminated string (printf does, sys_write does not) and figure out the length to put in edx
. If that's what you need help with, we've gotten distracted talking about int 80h
vs int 21h
vs WriteFile
. You may need to ask again...
EDIT: Okay, a subroutine. The non-obvious part of this is that call
puts the return address (the address of the instruction right after the call) on the stack, and ret
gets the address to return to off the stack, so we don't want to alter where ss:sp
points in between. We can change it, but we need to put it back where it was before we hit the ret
.
; purpose: to demonstrate a subroutine
; assemble with: nasm -f bin -o myfile.com myfile.asm
; (for DOS)
; Nasm defaults to 16-bit code in "-f bin" mode
; but it won't hurt to make it clear
bits 16
; this does not "cause" our code to be loaded
; at 100h (256 decimal), but informs Nasm that
; this is where DOS will load a .com file
; (needed to calculate the address of "msg", etc.)
org 100h
; we can put our data after the code
; or we can jump over it
; we do not want to execute it!
; this will cause Nasm to move it after the code
section .data
msg db "Hello, World!", 13, 10, "$"
msg2 db "Goodbye cruel world!", 13, 10, "$"
section .text
; execution starts here
mov dx, msg ; address/offset of msg
call myprint
; "ret" comes back here
; no point in a subroutine if we're only going to do it once
mov dx, msg2
call myprint
; when we get back, do something intelligent
exit:
mov ah. 4Ch ; DOS's exit subfunction
int 21h
; ---------------------------------------
; subroutines go here, after the exit
; we don't want to "fall through" into 'em!
myprint:
; expects: address of a $-terminated string in dx
; returns: nothing
push ax ; don't really need to do this
mov ah, 9 ; DOS's print subfunction
int 21h ; do it
pop ax ; restore caller's ax - and our stack!
ret
; end of subroutine
That's untested, but subject to typos and stupid logic errors, it "should" work. We can make it more complicated - pass the parameter on the stack instead of just in dx
. We can provide an example for Linux (same general idea). I suggest taking it in small steps...