What is the correct way to persist std::chrono time_point instances and then read them back into another instance of the same type?
typedef std::chrono::time_point<std::chrono::high_resolution_clock> time_point_t;
time_point_t tp = std::chrono::high_resolution_clock::now();
serializer.write(tp);
.
.
.
time_point_t another_tp;
serializer.read(another_tp);
The calls to write/read, assume that the instance of type time_point_t, can be somehow converted to a byte representation, which can then be written to or read from a disk or a socket etc.
A possible solution suggested by Alf is as follows:
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
//Generate POD to write to disk
unsigned long long ns0 = t0.time_since_epoch().count();
//Read POD from disk and attempt to instantiate time_point
std::chrono::high_resolution_clock::duration d(ns0)
std::chrono::high_resolution_clock::time_point t1(d);
unsigned long long ns1 = t1.time_since_epoch().count();
if ((t0 != t1) || (ns0 != ns1))
{
std::cout << "Error time points don't match!\n";
}
Note: The above code has a bug as the final instantiated time point does not match the original.
In the case of of the old style time_t, one typically just writes the entire entity to disk based on its sizeof and then reads it back the same way - In short what would be the equivalent for the new std::chrono types?