I have a dataset
category
cat a
cat b
cat a
I'd like to return something like the following which shows the unique values and their frequencies
category freq
cat a 2
cat b 1
I have a dataset
category
cat a
cat b
cat a
I'd like to return something like the following which shows the unique values and their frequencies
category freq
cat a 2
cat b 1
Use value_counts()
as @DSM commented.
In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df['a'].value_counts()
Out[37]:
b 3
a 2
s 2
dtype: int64
Also groupby
and count
. Many ways to skin a cat here.
In [38]:
df.groupby('a').count()
Out[38]:
a
a
a 2
b 3
s 2
[3 rows x 1 columns]
See the online docs.
If you wanted to add frequency back to the original dataframe use transform
to return an aligned index:
In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df
Out[41]:
a freq
0 a 2
1 b 3
2 s 2
3 s 2
4 b 3
5 a 2
6 b 3
[7 rows x 2 columns]
If you want to apply to all columns you can use:
df.apply(pd.value_counts)
This will apply a column based aggregation function (in this case value_counts) to each of the columns.
df.category.value_counts()
This short little line of code will give you the output you want.
If your column name has spaces you can use
df['category'].value_counts()
df.apply(pd.value_counts).fillna(0)
value_counts - Returns object containing counts of unique values
apply - count frequency in every column. If you set axis=1
, you get frequency in every row
fillna(0) - make output more fancy. Changed NaN to 0
In 0.18.1 groupby
together with count
does not give the frequency of unique values:
>>> df
a
0 a
1 b
2 s
3 s
4 b
5 a
6 b
>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]
However, the unique values and their frequencies are easily determined using size
:
>>> df.groupby('a').size()
a
a 2
b 3
s 2
With df.a.value_counts()
sorted values (in descending order, i.e. largest value first) are returned by default.
Using list comprehension and value_counts for multiple columns in a df
[my_series[c].value_counts() for c in list(my_series.select_dtypes(include=['O']).columns)]
If your DataFrame has values with the same type, you can also set return_counts=True
in numpy.unique().
index, counts = np.unique(df.values,return_counts=True)
np.bincount() could be faster if your values are integers.
As everyone said, the faster solution is to do:
df.column_to_analyze.value_counts()
But if you want to use the output in your dataframe, with this schema:
df input:
category
cat a
cat b
cat a
df output:
category counts
cat a 2
cat b 1
cat a 2
you can do this:
df['counts'] = df.category.map(df.category.value_counts())
df
Without any libraries, you could do this instead:
def to_frequency_table(data):
frequencytable = {}
for key in data:
if key in frequencytable:
frequencytable[key] += 1
else:
frequencytable[key] = 1
return frequencytable
Example:
to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}
You can also do this with pandas by broadcasting your columns as categories first, e.g. dtype="category"
e.g.
cats = ['client', 'hotel', 'currency', 'ota', 'user_country']
df[cats] = df[cats].astype('category')
and then calling describe
:
df[cats].describe()
This will give you a nice table of value counts and a bit more :):
client hotel currency ota user_country
count 852845 852845 852845 852845 852845
unique 2554 17477 132 14 219
top 2198 13202 USD Hades US
freq 102562 8847 516500 242734 340992
I believe this should work fine for any DataFrame columns list.
def column_list(x):
column_list_df = []
for col_name in x.columns:
y = col_name, len(x[col_name].unique())
column_list_df.append(y)
return pd.DataFrame(column_list_df)
column_list_df.rename(columns={0: "Feature", 1: "Value_count"})
The function "column_list" checks the columns names and then checks the uniqueness of each column values.
@metatoaster has already pointed this out.
Go for Counter
. It's blazing fast.
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
Cheers!
The following code creates frequency table for the various values in a column called "Total_score" in a dataframe called "smaller_dat1", and then returns the number of times the value "300" appears in the column.
valuec = smaller_dat1.Total_score.value_counts()
valuec.loc[300]
n_values = data.income.value_counts()
First unique value count
n_at_most_50k = n_values[0]
Second unique value count
n_greater_50k = n_values[1]
n_values
Output:
<=50K 34014
>50K 11208
Name: income, dtype: int64
Output:
n_greater_50k,n_at_most_50k:-
(11208, 34014)
your data:
|category|
cat a
cat b
cat a
solution:
df['freq'] = df.groupby('category')['category'].transform('count')
df = df.drop_duplicates()
value_counts()
is the way to go. All other methods are inferiorOn top of it being idiomatic and easy to call, here are a couple more reasons why it should be used.
If you look at the performance plots below, for most of the native pandas dtypes, value_counts()
is the most efficient (or equivalent to) option.1 In particular, it's faster than both groupby.size
and groupby.count
for all dtypes.
You can not only count the frequency of each value, you can bin them in one go. For other options, you'll have to go through an additional pd.cut
step to get the same output. For example,
df = pd.DataFrame({'col': range(100)})
bins = [-float('inf'), 33, 66, float('inf')]
df['col'].value_counts(bins=bins, sort=False)
(-inf, 33.0] 34
(33.0, 66.0] 33
(66.0, inf] 33
Name: col, dtype: int64
groupby.count
or groupby.size
The main difference between groupby.count
and groupby.size
is that count
counts only non-NaN values while size
returns the length (which includes NaN), if the column has NaN values.
value_counts()
is equivalent to groupby.count
by default but can become equivalent to groupby.size
if dropna=False
, i.e. df['col'].value_counts(dropna=False)
.
1 Code used to produce the perfplot:
import numpy as np
import pandas as pd
from collections import Counter
import perfplot
import matplotlib.pyplot as plt
gen = lambda N: pd.DataFrame({'col': np.random.default_rng().integers(N, size=N)})
setup_funcs = [
('numeric', lambda N: gen(N)),
('nullable integer dtype', lambda N: gen(N).astype('Int64')),
('object', lambda N: gen(N).astype(str)),
('string (extension dtype)', lambda N: gen(N).astype('string')),
('categorical', lambda N: gen(N).astype('category')),
('datetime', lambda N: pd.DataFrame({'col': np.resize(pd.date_range('2020', '2024', N//10+1), N)}))
]
fig, axs = plt.subplots(3, 2, figsize=(15, 15), facecolor='white', constrained_layout=True)
for i, funcs in enumerate(zip(*[iter(setup_funcs)]*2)):
for j, (label, func) in enumerate(funcs):
plt.sca(axs[i, j])
perfplot.plot(
setup=func,
kernels=[
lambda df: df['col'].value_counts(sort=False),
lambda df: pd.Series(*reversed(np.unique(df['col'], return_counts=True))),
lambda df: pd.Series(Counter(df['col'])),
lambda df: df.groupby('col').size(),
lambda df: df.groupby('col')['col'].count()
],
labels=['value_counts', 'np.unique', 'Counter', 'groupby.size', 'groupby.count'],
n_range=[2**k for k in range(21)],
xlabel='len(df)',
title=f'Count frequency in {label} column',
equality_check=lambda x,y: x.eq(y.loc[x.index]).all()
);