I have a numpy 3D array from Image(PIL/Pillow) object.
[[178 214 235]
[180 215 236]
[180 215 235]
...,
[146 173 194]
[145 172 193]
[146 173 194]]
...,
[[126 171 203]
[125 169 203]
[128 171 205]
...,
[157 171 182]
[144 167 182]
[131 160 180]]]
Image size about 500x500 px. I need to apply two functions for each pixel.
- Convert RGB to LAB (using functions from python-colormath)
This function takes 1D array like
[157, 171, 182]
and return 1D array with LAB color, e.g.[53.798345635, -10.358443685, 100.358443685]
. - Find nearest color from custom palette using
scipy.spatial.cKDTree
.
Custom palette is kd-tree.
palette = [[0,0,0], [127,127,127], [255,255,255]] # or [[0.,0.,0.], [50.,0.,0.], [100.,0.,0.]] for LAB color
tree = scipy.spatial.cKDTree(palette)
def find nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
Is there a faster solution than iterating with Python? E.g.
for row in array:
for pixel in row:
apply_fuction1(pixel) # where pixel is one dimensional array like [157 171 182]
apply_fuction2(pixel)
UPD1 I dont know what I am doing wrong, but:
python3 -mtimeit -s'import test' 'test.find_nearest()' # my variant with 2 loops and Image.putdata()
10 loops, best of 3: 3.35 sec per loop
python3 -mtimeit -s'import test' 'test.find_nearest_with_map()' # list comprehension with map and Image.fromarray() by traceur
10 loops, best of 3: 3.67 sec per loop
python3 -mtimeit -s'import test' 'test.along_axis()' # np.apply_along_axis() and Image.fromarray() by AdrienG
10 loops, best of 3: 5.25 sec per loop
def find_nearest(array=test_array):
new_image = []
for row in array:
for pixel in row:
distance, result = tree.query(pixel)
new_pixel = palette[result]
new_image.append(new_pixel)
im = Image.new('RGB', (300, 200))
im.putdata(new_image)
def _find_nearest(pixel):
distance, result = tree.query(pixel)
new_pixel = palette[result]
return new_pixel
def along_axis(array=test_array):
array = np.apply_along_axis(_find_nearest, 2, array)
im = Image.fromarray(np.uint8(array))
def find_nearest_with_map(array=test_array):
array = [list(map(_find_nearest, row)) for row in array]
im = Image.fromarray(np.uint8(array))