I would like to perform a decision tree analysis. I want that the decision tree uses all the variables in the model.
I also need to plot the decision tree. How can I do that in R?
This is a sample of my dataset
> head(d)
TargetGroup2000 TargetGroup2012 SmokingGroup_Kai PA_Score wheeze3 asthma3 tres3
1 2 2 4 2 0 0 0
2 2 2 4 3 1 0 0
3 2 2 5 1 0 0 0
4 2 2 4 2 1 0 0
5 2 3 3 1 0 0 0
6 2 3 3 2 0 0 0
>
I would like to use the formula
myFormula <- wheeze3 ~ TargetGroup2000 + TargetGroup2012 + SmokingGroup_Kai + PA_Score
Note that all the variables are categorical.
EDIT:
My problem is that some variables do not appear in the final decision tree.
The deap of the tree should be defined by a penalty parameter alpha. I do not know how to set this penalty in order that all the variables appear in my model.
In other words I would like a model that minimize the training error.