Actually an image is descretized into 3 bins (0,1,2) .So any color that falls into particular bin is replaced with the bin no.Therefore discretized image can be viewed as this matrix:
a=[[2,1,2,2,1,1],
[2,2,1,2,1,1],
[2,1,3,2,1,1],
[2,2,2,1,1,2],
[2,2,1,1,2,2],
[2,2,1,1,2,2]]
The next step is to compute the connected components. Individual components will be labeled with letters (A;B;C;D;E;F etc) and we will need to keep a table which maintains the discretized color associated with each label, along with the number of pixels with that label. Of course, the same discretized color can be associated with different labels if multiple contiguous regions of the same color exist. The image may then become
b=[[B,C,B,B,A,A],
[B,B,C,B,A,A],
[B,C,D,B,A,A],
[B,B,B,A,A,E],
[B,B,A,A,E,E],
[B,B,A,A,E,E]]
and the connected components table will be:
Label A B C D E
Color 1 2 1 3 1
Size 12 15 3 1 5
Let q=4.The components A, B, and E have more than q pixels, and the components C and D less than q pixels. Therefore the pixels in A;B and E are classied as coherent, while the pixels in C and D are classied as incoherent. The CCV for this image will be
Color : 1 2 3
coherent: 17 15 0
incoherent: 3 0 1
A given color bucket may thus contain only coherent pixels (as does 2), only incoherent pixels (as does 3), or a mixture of coherent and incoherent pixels (as does 1). If we assume there are only 3 possible discretized colors, the CCV can also be written as <(17; 3) ; (15; 0) ; (0; 1)> for three colors
Please anybody help me with the algorithm for finding connected components
I have implemented iterative dfs and recursive dfs ,but both seem to be inefficient ,they take nearly 30 minutes to compute connected components of an image.Anybody help me how to find it ?I'm running out of time I have to submit my project. I'm pasting both my codes:
Image size:384*256 code using recursive dfs:
import cv2
import sys
from PIL import Image
import ImageFilter
import numpy
import PIL.Image
from numpy import array
stack=[]
z=0
sys.setrecursionlimit(9000000)
def main():
imageFile='C:\Users\Abhi\Desktop\cbir-p\New folder\gray_image.jpg'
size = Image.open(imageFile).size
print size
im=Image.open(imageFile)
inimgli=[]
for x in range(size[0]):
inimgli.append([])
for y in range(size[1]):
inten=im.getpixel((x,y))
inimgli[x].append(inten)
for item in inimgli:
item.insert(0,0)
item.append(0)
inimgli.insert(0,[0]*len(inimgli[0]))
inimgli.append([0]*len(inimgli[0]))
blurimg=[]
for i in range(1,len(inimgli)-1):
blurimg.append([])
for j in range(1,len(inimgli[0])-1):
blurimg[i-1].append((inimgli[i-1][j-1]+inimgli[i-1][j]+inimgli[i-1][j+1]+inimgli[i][j-1]+inimgli[i][j]+inimgli[i][j+1]+inimgli[i+1][j-1]+inimgli[i+1][j]+inimgli[i+1][j+1])/9)
#print blurimg
displi=numpy.array(blurimg).T
im1 = Image.fromarray(displi)
im1.show()
#i1.save('gray.png')
descretize(blurimg)
def descretize(rblurimg):
count=-1
desc={}
for i in range(64):
descli=[]
for t in range(4):
count=count+1
descli.append(count)
desc[i]=descli
del descli
#print len(rblurimg),len(rblurimg[0])
#print desc
drblur=[]
for x in range(len(rblurimg)):
drblur.append([])
for y in range(len(rblurimg[0])):
for item in desc:
if rblurimg[x][y] in desc[item]:
drblur[x].append(item)
#displi1=numpy.array(drblur).T
#im1 = Image.fromarray(displi1)
#im1.show()
#im1.save('xyz.tif')
#print drblur
connected(drblur)
def connected(rdrblur):
table={}
#print len(rdrblur),len(rdrblur[0])
for item in rdrblur:
item.insert(0,0)
item.append(0)
#print len(rdrblur),len(rdrblur[0])
rdrblur.insert(0,[0]*len(rdrblur[0]))
rdrblur.append([0]*len(rdrblur[0]))
copy=[]
for item in rdrblur:
copy.append(item[:])
global z
count=0
for i in range(1,len(rdrblur)-1):
for j in range(1,len(rdrblur[0])-1):
if (i,j) not in stack:
if rdrblur[i][j]==copy[i][j]:
z=0
times=dfs(i,j,str(count),rdrblur,copy)
table[count]=(rdrblur[i][j],times+1)
count=count+1
#z=0
#times=dfs(1,255,str(count),rdrblur,copy)
#print times
#print stack
stack1=[]
#copy.pop()
#copy.pop(0)
#print c
#print table
for item in table.values():
stack1.append(item)
#print stack1
table2={}
for v in range(64):
table2[v]={'coherent':0,'incoherent':0}
#for item in stack1:
# if item[0] not in table2.keys():
# table2[item[0]]={'coherent':0,'incoherent':0}
for item in stack1:
if item[1]>300:
table2[item[0]]['coherent']=table2[item[0]]['coherent']+item[1]
else:
table2[item[0]]['incoherent']=table2[item[0]]['incoherent']+item[1]
print table2
#return table2
def dfs(x,y,co,b,c):
dx = [-1,-1,-1,0,0,1,1,1]
dy = [-1,0,1,-1,1,-1,0,1]
global z
#print x,y,co
c[x][y]=co
stack.append((x,y))
#print dx ,dy
for i in range(8):
nx = x+(dx[i])
ny = y+(dy[i])
#print nx,ny
if b[x][y] == c[nx][ny]:
dfs(nx,ny,co,b,c)
z=z+1
return z
if __name__ == '__main__':
main()
iterative dfs:
def main():
imageFile='C:\Users\Abhi\Desktop\cbir-p\New folder\gray_image.jpg'
size = Image.open(imageFile).size
print size
im=Image.open(imageFile)
inimgli=[]
for x in range(size[0]):
inimgli.append([])
for y in range(size[1]):
inten=im.getpixel((x,y))
inimgli[x].append(inten)
for item in inimgli:
item.insert(0,0)
item.append(0)
inimgli.insert(0,[0]*len(inimgli[0]))
inimgli.append([0]*len(inimgli[0]))
blurimg=[]
for i in range(1,len(inimgli)-1):
blurimg.append([])
for j in range(1,len(inimgli[0])-1):
blurimg[i-1].append((inimgli[i-1][j-1]+inimgli[i-1][j]+inimgli[i-1][j+1]+inimgli[i][j-1]+inimgli[i][j]+inimgli[i][j+1]+inimgli[i+1][j-1]+inimgli[i+1][j]+inimgli[i+1][j+1])/9)
#print blurimg
#displi=numpy.array(blurimg).T
#im1 = Image.fromarray(displi)
#im1.show()
#i1.save('gray.png')
descretize(blurimg)
def descretize(rblurimg):
count=-1
desc={}
for i in range(64):
descli=[]
for t in range(4):
count=count+1
descli.append(count)
desc[i]=descli
del descli
#print len(rblurimg),len(rblurimg[0])
#print desc
drblur=[]
for x in range(len(rblurimg)):
drblur.append([])
for y in range(len(rblurimg[0])):
for item in desc:
if rblurimg[x][y] in desc[item]:
drblur[x].append(item)
#displi1=numpy.array(drblur).T
#im1 = Image.fromarray(displi1)
#im1.show()
#im1.save('xyz.tif')
#print drblur
connected(drblur)
def connected(rdrblur):
for item in rdrblur:
item.insert(0,0)
item.append(0)
#print len(rdrblur),len(rdrblur[0])
rdrblur.insert(0,[0]*len(rdrblur[0]))
rdrblur.append([0]*len(rdrblur[0]))
#print len(rdrblur),len(rdrblur[0])
copy=[]
for item in rdrblur:
copy.append(item[:])
count=0
#temp=0
#print len(alpha)
for i in range(1,len(rdrblur)-1):
for j in range(1,len(rdrblur[0])-1):
if (i,j) not in visited:
dfs(i,j,count,rdrblur,copy)
count=count+1
print "success"
def dfs(x,y,co,b,c):
global z
#print x,y,co
stack=[]
c[x][y]=str(co)
visited.append((x,y))
stack.append((x,y))
while len(stack) != 0:
exstack=find_neighbors(stack.pop(),co,b,c)
stack.extend(exstack)
#print visited
#print stack
#print len(visited)
#print c
'''while (len(stack)!=0):
(x1,y1)=stack.pop()
exstack=find_neighbors(x1,y1)
stack.extend(exstack)'''
def find_neighbors((x2,y2),cin,b,c):
#print x2,y2
neighborli=[]
for i in range(8):
x=x2+(dx[i])
y=y2+(dy[i])
if (x,y) not in visited:
if b[x2][y2]==b[x][y]:
visited.append((x,y))
c[x][y]=str(cin)
neighborli.append((x,y))
return neighborli
if __name__ == '__main__':
main()