As others have noted, it is only possible if (1) your compiler supports tail call optimization, and (2) if your function is eligible for such an optimization. The optimization is to reuse the existing stack and perform a JMP (i.e., a GOTO in assembly) instead of a CALL.
In fact, your example function is indeed eligible for such an optimization. The reason is that the last thing your function does before returning is call itself; it doesn't have to do anything after the last call to funcnew()
. However, only certain compilers will perform such an optimization. GCC, for instance, will do it. For more info, see Which, if any, C++ compilers do tail-recursion optimization?
The classic material on this is the factorial function. Let's make a recursive factorial function that is not eligible for tail call optimization (TCO).
int fact(int n)
{
if ( n == 1 ) return 1;
return n*fact(n-1);
}
The last thing it does is to multiply n
with the result from fact(n-1)
. By somehow eliminating this last operation, we would be able to reuse the stack. Let's introduce an accumulator variable that will compute the answer for us:
int fact_helper(int n, int acc)
{
if ( n == 1 ) return acc;
return fact_helper(n-1, n*acc);
}
int fact_acc(int n)
{
return fact_helper(n, 1);
}
The function fact_helper
does the work, while fact_acc
is just a convenience function to initialize the accumulator variable.
Note how the last thing fact_helper
does is to call itself. This CALL can be converted to a JMP by reusing the existing stack for the variables.
With GCC, you can verify that it is optimized to a jump by looking at the generated assembly, for instance gcc -c -O3 -Wa,-a,-ad fact.c
:
...
37 L12:
38 0040 0FAFC2 imull %edx, %eax
39 0043 83EA01 subl $1, %edx
40 0046 83FA01 cmpl $1, %edx
41 0049 75F5 jne L12
...
Some programming languages, such as Scheme, will actually guarantee that proper implementations will perform such optimizations. They will even do it for non-recursive tail calls.