Joblib for parallel computation taking more time for njob>1 (njob=2 takes 12.6s finished) than njob=1 (1.3s finished). I am in mac OSX 10.9 with 16GB RAM. Am I doing some mistake? Here is a simple demo code:
from joblib import Parallel, delayed
def func():
for i in range(200):
for j in range(300):
yield i, j
def evaluate(x):
i=x[0]
j=x[1]
p=i*j
return p, i, j
if __name__ == '__main__':
results = Parallel(n_jobs=3, verbose=2)(delayed(evaluate)(x) for x in func())
res, i, j = zip(*results)