I used to read my data with numpy.loadtxt()
. However, lately I found out in SO, that pandas.read_csv()
is much more faster.
To read these data I use:
pd.read_csv(filename, sep=' ',header=None)
The problem that I encounter right now is that in my case the separator can differ from one space, x spaces to even a tab.
Here how my data could look like:
56.00 101.85 52.40 101.85 56.000000 101.850000 1
56.00 100.74 50.60 100.74 56.000000 100.740000 2
56.00 100.74 52.10 100.74 56.000000 100.740000 3
56.00 102.96 52.40 102.96 56.000000 102.960000 4
56.00 100.74 55.40 100.74 56.000000 100.740000 5
That leads to results like:
0 1 2 3 4 5 6 7 8
0 56 NaN NaN 101.85 52.4 101.85 56 101.85 1
1 56 100.74 50.6 100.74 56.0 100.74 2 NaN NaN
2 56 100.74 52.1 100.74 56.0 100.74 3 NaN NaN
3 56 102.96 52.4 102.96 56.0 102.96 4 NaN NaN
4 56 100.74 55.4 100.74 56.0 100.74 5 NaN NaN
I have to specify that my data are >100 MB. So I can not preprocess the data or clean them first. Any ideas how to get this fixed?