This post explains how to profile benchmarks with an example: Benchmark Profiling with pprof.
The following benchmark simulates some CPU work.
package main
import (
"math/rand"
"testing"
)
func BenchmarkRand(b *testing.B) {
for n := 0; n < b.N; n++ {
rand.Int63()
}
}
To generate a CPU profile for the benchmark test, run:
go test -bench=BenchmarkRand -benchmem -cpuprofile profile.out
The -memprofile
and -blockprofile
flags can be used to generate memory allocation and blocking call profiles.
To analyze the profile use the Go tool:
go tool pprof profile.out
(pprof) top
Showing nodes accounting for 1.16s, 100% of 1.16s total
Showing top 10 nodes out of 22
flat flat% sum% cum cum%
0.41s 35.34% 35.34% 0.41s 35.34% sync.(*Mutex).Unlock
0.37s 31.90% 67.24% 0.37s 31.90% sync.(*Mutex).Lock
0.12s 10.34% 77.59% 1.03s 88.79% math/rand.(*lockedSource).Int63
0.08s 6.90% 84.48% 0.08s 6.90% math/rand.(*rngSource).Uint64 (inline)
0.06s 5.17% 89.66% 1.11s 95.69% math/rand.Int63
0.05s 4.31% 93.97% 0.13s 11.21% math/rand.(*rngSource).Int63
0.04s 3.45% 97.41% 1.15s 99.14% benchtest.BenchmarkRand
0.02s 1.72% 99.14% 1.05s 90.52% math/rand.(*Rand).Int63
0.01s 0.86% 100% 0.01s 0.86% runtime.futex
0 0% 100% 0.01s 0.86% runtime.allocm
The bottleneck in this case is the mutex, caused by the default source in math/rand being synchronized.
Other profile presentations and output formats are also possible, e.g. tree
. Type help
for more options.
Note, that any initialization code before the benchmark loop will also be profiled.