I have this simple code that helped me to measure how classes with __slots__
perform (taken from here):
import timeit
def test_slots():
class Obj(object):
__slots__ = ('i', 'l')
def __init__(self, i):
self.i = i
self.l = []
for i in xrange(1000):
Obj(i)
print timeit.Timer('test_slots()', 'from __main__ import test_slots').timeit(10000)
If I run it via python2.7 - I would get something around 6 seconds - ok, it's really faster (and also more memory-efficient) than without slots.
But, if I run the code under PyPy (using 2.2.1 - 64bit for Mac OS/X), it starts to use 100% CPU and "never" returns (waited for minutes - no result).
What is going on? Should I use __slots__
under PyPy?
Here's what happens if I pass different number to timeit()
:
timeit(10) - 0.067s
timeit(100) - 0.5s
timeit(1000) - 19.5s
timeit(10000) - ? (probably more than a Game of Thrones episode)
Thanks in advance.
Note that the same behavior is observed if I use namedtuple
s:
import collections
import timeit
def test_namedtuples():
Obj = collections.namedtuple('Obj', 'i l')
for i in xrange(1000):
Obj(i, [])
print timeit.Timer('test_namedtuples()', 'from __main__ import test_namedtuples').timeit(10000)