2

Just got a Windows box set up with two 64 bit Intel Xeon X5680 3.33 GHz processors (6 cores each) and 12 GB of RAM. I've been using SAS on some large data sets, but it's just too slow, so I want to set up R to do parallel processing. I want to be able to carry out matrix operations, e.g., multiplication and inversion. Most of my data are not huge, 3-4 GB range, but one file is around 50 GB. It's been a while since I used R, so I looked around on the web, including the CRAN HPC, to see what was available. I think a foreach loop and the bigmemory package will be applicable. I came across this post: Is there a package for parallel matrix inversion in R that had some interesting suggestions. I was wondering if anyone has experience with the HIPLAR packages. Looks like hiparlm adds functionality to the matrix package and hiplarb add new functions altogether. Which of these would be recommended for my application? Furthermore, there is a reference to the PLASMA library. Is this of any help? My matrices have a lot of zeros, so I think they could be considered sparse. I didn't see any examples of how to pass data fro R to PLASMA, and looking at the PLASMA docs, it says it does not support sparse matrices, so I'm thinking that I don't need this library. Am I on the right track here? Any suggestions on other approaches?

EDIT: It looks like HIPLAR and package pbdr will not be helpful. I'm leaning more toward bigmemory, although it looks like I/O may be a problem: http://files.meetup.com/1781511/bigmemoryRandLinearAlgebra_BryanLewis.pdf. This article talks about a package vam for virtual associative matrices, but it must be proprietary. Would package ff be of any help here? My R skills are just not current enough to know what direction to pursue. Pretty sure I can read this using bigmemory, but not sure the processing will be very fast.

Community
  • 1
  • 1
  • ff is not going to help you much with matrix operations. It is better suited for rectangular objects. For matrix operations, you should consider http://r-pbd.org/, namely the pbdDMAT package –  May 02 '14 at 07:42

1 Answers1

0

If you want to use HiPLAR (MAGMA and PLASMA libraries in R), it is only available for Linux at the moment. For this and many other things, I suggest switching your OS to the penguin.

That being said, Intel MKL optimization can do wonders for these sort of operations. For most practical uses, it is the way to go. Python built with MKL optimization for example can process large matrices about 20x faster than IDL, which was designed specifically for image processing. R has similarly shown vast improvements when built with MKL optimization. You can also install R Open from Revolution Analytics, which includes MKL optimization, but I am not sure that it has quite the same effect as building it yourself using Intel tools: https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux

I would definitely consider the type of operations one is looking to perform. GPU processes are those that lend well to high parallelism (many of the same little computations running at once, as with matrix algebra), but they are limited by bus speeds. Intel MKL optimization is similar in that it can help use all of your CPU cores, but it is really optimized to Intel CPU architecture. Hence, it should provide basic memory optimization too. I think that is the simplest route. HiPLAR is certainly the future, as it is CPU-GPU by design, especially with highly parallel heterogeneous architectures making their way into consumer systems. Most consumer systems today cannot fully utilize this though I think.

Cheers,

Adam

Adam Erickson
  • 6,027
  • 2
  • 46
  • 33